.~ AD=A061 919 SRI INTERNATIONAL HENLO PARK CA COMPUTER SCIENCE LAB F/6 9/2
THE SEMIAUTOMATIC GENERATION OF INDUCTIVE ASSERTIONS FOR PROVIN==ETC(U)
AUG 78 B ELSPAS» R E SHOSTAK Fll620-73-C—0068
UNCLASSIFIED AFOSR-TR=78-1491

e —————— —— —— — 0 —

|

—

cE iz

o

=22

o =

Jl&
25 e pie

Illﬂi: Il

e ()
I- / g A
‘/AFOSR. R-78-1491
f&)
e
/

«
f
[

‘THE SEMIAUTOMATIC GENERATION
OF INDUCTIVE ASSERTIONS ‘
| FOR PROVING PROGRAM connecmess

J Final Report.

Covering the Perlod 1 July 1977, Q 3@ June 14978

ADA0G619195

/) SRI Project 2686 -
eor\tracyF4462Q -73- C 9068
£ | / August 1978 saY 4460,
" o e - ’
,“ ‘\;./} Pl 'M.!
Q. By:}‘ BernardlElspas[itaff Scientist
g; LFiobert E.}Shostak;’ Computer Scientist
Computer Science Laboratory
2 Computer Science and Technology Division
—
31 B
|
R - Prepared for: Sy 1
=0 5 | o (/6] 524
iy ir Force Office of Scientific Research oo
=5 Bolling Air Force Base, D.C. 20332
/ H
Attention: [/ /
Lt. Col. George W. McKemie, Contract Monitor
Directorate of Mathematical and Information Sciences

DDC

.....\..- “‘ «mr-.r

DEC 7 1978 |||

SRI International .
333 Ravenswood Avenue / {x/
7 # /

SEF 1 S —

Menlo Park, California 94025
Cable: SRI INTL MNP
TWX: 910-373-1248

Approved for public release;
distribution unlimited,

THE SEMIAUTOMATIC GENERATION |
OF INDUCTIVE ASSERTIONS |
FOR PROVING PROGRAM CORRECTNESS

Final Report
Covering the Period 1 July 1977 through 30 June 1978

1
SRI Project 2686 ‘
Contract F44620-73-C-0068 L el /

August 1978

By: Bernard Elspas, Staff Scientist
Robert E. Shostak, Computer Scientist

Computer Science Laboratory :
Computer Science and Technology Division l

-,

Prepared for:

Air Force Office of Scientific Research
Bolling Air Force Base, D.C. 20332

Attention:

Lt. Col. George W. McKemie, Contract Monitor
Directorate of Mathematical and Information Scignces

AIR PORCE OFFICE OF SCITNTIFIC RESEARCH (AFSC)
NOTICE OF TRAMIMITTAL TO DDC , '
This techuigal i y ¢ and i
approved o AiA Lou=-12 (7
Distributic.

A. D. BLOSL

Technieal luformation Orficer

S
"
L

Approved:

Jack Goldberg, Director
Computer Science Laboratory

David H. Brandin, Executive Director
Computer Science and Technology Division

ABSTRACT

This final report describes progress over the period 1 July 1977
through 30 June 1978 on a five-year project aimed at the problem of
synthesizing so-called inductive assertions to support the Floyd-Hoare
method for proving correctness of computer programs.

During the first few years of the project, the emphasis was on more
E or less direct approaches toward alleviating this problem. Initially,
we concentrated on building and using a mechanical solver for finite
difference equations to synthesize inductive assertions. This approach

had limited success. (Unfortunately, neither this approach nor the
allied approaches pursued simultaneously by Katz, Manna, Wegbreit, and
German have proved to be adequate in any general sense. Therefore,
5 during the period 1975-77 we explored alternatives that gave promise of
at least alleviating the problem or of bypassing it entirely. These
; alternatives encompassed the transformation of programs into primitive
[recursive form prior to verification, the method of generator induction
for proof of properties of complex data structures, the use of a
hierarchical design methodology (HDM) to structure programs so as to
minimize the need for loop-cutting assertions, and the methods allied to
subgoal induction and camputational induction. The general tenor of
these alternative schemes is that to facilitate program verification
considerable care must be taken in properly structuring both the
programs to be proved and their specifications. An ideal situation
would be one in which all the specifications are written in a formal .
language that can be processed by a powerful theorem prover. For the
Boyer-Moore theorem prover recursive function theory is such a language.

In the fifth year of our research, reported here, we concentrated
on using the Boyer-Moore system to prove several quite different kinds
of programs. The first set of programs verified here form a system of
LISP functions implementing a verification condition generator (VCG) for
a simple block-structured language. The specifications for this WG are
given as standard Hoare axioms and rules. The second set of programs

i1i

PRECEDING FAGE ELANKeNOT FILMED

—~- -

are algorithms for achieving synchronization among several clocks. This

application arose in connection with the design of an operating system
for a fault-tolerant avionics computer (SIFT) with hardware and software
redundancy features.

A separate problem addressed during the fifth year is the
application of directed graph theory to the design of an efficient
algorithm for deciding inequalities for sets of integer variables. This
work represents a further extension of a series of efficient decision
algorithms for Presburger arithmetic (under various restrictions). Most
of these algorithms have been implemented (in LISP) as part of
experimental program verifiers built at SRI during the past few years.

iv

PROJECT PERSONNEL

The following people constituted the project team for this effort
at various times during the period 1 July 1977 through 30 June 1978:
Robert S. Boyer
Bernard Elspas
Milton W. Green

Robert E. Shostak

Drs. Elspas and Shostak served as co-principal investigators.

The authors wish to acknowledge their considerable debt to Drs.
Robert S. Boyer and J Strother Moore for many valuable discussions, in
particular for assistance 1in using their recursive function theorem

prover. We also wish to express our gratitude for helpful discussions
on a variety of subjects to the following individuals: Woody Bledsoe,
John Guttag, Paul Gloess, Shmuel Katz, Ralph London, and Mark Moriconi.

CONTENTS

ABSERACTE s e e s s s el s e e a e e e e e e e e 0k 1
PROJECT PERSONNEE. ¢ o & & o0 & & o & s & 5 & o 9 4 « @ & o o 9 @ v
I INTRODUCTION AND SUMMARY . o o o @ o @ ¢ © s &« o & s ® ¥ s 1
A, FntroducEion e e e e e e el e e s e e e 1

B. Relation to Other Computer Science Laboratory
VST EEEEN e e e e o O o G AR R 3

C. Report OVEervIew « W el ol s ol s o el el e e e e 5

I1 DECIDING LINEAR INEQUALITIES BY COMPUTING LOOP

RESEBUESE GG e G ais i e e e el e e e e e e el e 7
A, Tatrodeaction ool Gl Glle o e e e e e e 7
Big Pefinittions Tl e IS e e e e e e e e e e 8
Cs Procedure for Inequalities with Two Variables 10
b, Efficiency and Other ISSuUes . o & « o« & s & s & o o & L2
E. SErict Inequalifies o « o w = o o & & o @ w @ o o = 6 3
s Extension to Arbitrary Sets of Inequalities i3
G. Proof of the Main Theorem . o ¢ « o & « o = o o & @ i 15

III CONSISTENCY PROOFS FOR A SIMPLE VERIFICATION

CONDITION GENERATOR & & o ¢ o o & o o & s o s s & o © & & 21
A, ERLEodUuction & ¢ @ @ e w @ @ @ m 6w el e w @ @ W 21
B. Syntax for a Simple Lamguage . « « « « o o« o« o o o o 23
Cs Formal Semantics for the Language SL . . . « « « o & 26
D. Specifications of a VCG for SL-Consistency E

with the ARIoNY o « o « o ¢ # % & & & % &% & » & & = !

joi Verification of the Implementation in Terms

of the Specificabions v o & w & & & & & @ & & & & © @ 40
F. Somie Observations . s &« s » & » # & % % & & % & & » & 46
v INDUCTIVE PROOF OF SET PROPERTIES < ¢ ¢ o « o o s o & = & 49 |
REFERBENCES .« & ¢ 5 4 = ¢ % 5 3 5 & & & % & & % % & & % & % % % 53
vii

PRECEDING FAGE ELANKe \OT FILMED

APPENDICES

A Machine Proofs of Consistency Between Algebraic |
| Specifications and a VCG Implementation. A-1
; B "Reaching Agreement in the Presence of Faults,"
by M. C. Pease, R, E. Shostak, and L, Lamport . . . B-1
€ Machine Proofs of the Synchronization Algorithm ., . Cc-1

D Project Activities . « & v & ¢ o ¢ ¢ ¢ o 0 e e 0 .. D-1

I INTRODUCTION AND SUMMARY

A. Introduction.

This 1s a final report covering progress during the last year of a
five-year research effort on problems entailed in making the Floyd-Hoare
approach to program verification [1,2]* a practical technique. An
extensive summary of the work of the preceding four years appears in our
last interim report (3].

The Floyd-Hoare technique is a method for applying mathematical-
logical tools to proving "correctness" of computer programs. It is now
among the most promising approaches to the achievement of reliable
computer programs--currently a source of major concern to the Air Force.
The Floyd-Hoare technigue has already had considerable impact on the
fields of language design [4,5], formal specification and design of
software [6]. Various aspects of the method are currently being
employed for the design and verification of specific properties of
developmental software systems ([7,8], especially such properties as
security and fault tolerance, which are of critical importance in Air
Force systems. A number of developmental program verifiers (at various
stages of development) are 1in experimental use at such 1laboratory
environments as USC-ISI, Stanford University, University of Texas, and
System Development Corporation, as well as at SRI International.
Closely allied prototype systems using symbolic execution also exist at
IBM Watson Research Center [9,10] and General Research Corporation [11].
One of SRI's program verifiers (supported by RADC) 1is scheduled for
completion in November 1980 as part of an integrated enviromment for the
design, development, debugging, and verification of JOVIAL J73/1
programs.

However, the method of proof of correctness has not yet come into
widespread use as an everyday technique for attaining confidence in the
correctness of software products. This is attributable in part to the
usual time lapse between a laboratory demonstration of feasibility and
practical use. For formal program verification the transition has been

¥References are listed following Section IV.

1

hampered by several factors which are perhaps unique to this discipline.
First, the Floyd-Hoare method (indeed, any formal method for proving
correctness) demands unusual mathematical rigor, considerable skill in
formal logic, and sophistication beyond the capabilities of most
research programmers (let alone production programmers!). Second, the
necessity for inventing inductive assertions has been found to be a
serious stumbling block to the practical application of the Floyd~Hoare
method, even when machine aids are provided. It has generally been

recognized that there is an education gap in the training of programmers
which must be overcome if such formal devices are to be brought into the
practical arena. Fortunately, most university Computer Science
departments are now making loop (inductive) assertions an integral part
of the teaching of iterative and recursive programming.

The intrinsic difficulty of writing adequate inductive assertions
was recognized as long ago as 1969 [12), and it was, of course, the
initial motivation for this project. Despite our best efforts, and
those of a number of other researchers [13,14,15] it cannot be said that
this problem has been "solved" in general. The results of our work, and
of the others just cited has made it possible to mechanize the invention
of inductive assertions in special cases and for special domains. Thus,
the difference eguation technigue, especially when combined with the
"outside-in" heuristics of Katz-Menna [12], usually provides adequate
inductive assertions for integer (amd real number) programs. A great
deal of insight has been gained from the alternative views of the
problem posed by the subgoal induction method of Morris and Wegbreit
(16], and by the analysis of loop schemes due to Basu and Misra [15].
In particular, many have noted that the invention of inductive
assertions is analogous to the "generalization step" often required in
carrying out inductive proofs. Our work on primitive recursive
transformation [17] carried this notion one step further. There also
emerged from all of this work the underlying conclusion that an
important part of the problem of loop assertions really 1lies in the
basic difficulty of adequately specifying software. For this reason we
spent part of our effort in exploring the capabilities of two

specification methodologies--the method of algebraic specifications [18]
and methods of hierarchical specification of abstract modules. The
latter is best exemplified by the SRI Hierarchical Development
Methodology (HDM) (6]. Both approaches serve to simplify the problems
posed by inductive assertions by (1) minimizing the need for loop-

cutting assertions, and (2) providing powerful assertion languages
(e.g., the SRI-HDM language SPECIAL) in which to write specifications.
In Appendix A of our last interim report (3] we applied HDM methodology
to proving properties of a real program. Section III of the present
report provides a similar example as to how the algebraic specification
technique can be employed.

In general we have becane impressed with the definitional power
provided by writing specifications in the form of recursive function
definitions, as required, e.g., in making use of the Boyer-Moore theorem
prover. The structure of such definitions enforces on the programmer a
strict discipline that automatically results in clean partitions between
pieces of code, and the extensive induction capabilities of the Boyer-
Moore system provide the generalization "power" that substitutes for the
invention of inductive assertions in the strict Floyd-Hoare approach.
Consequently, much of our recent work has used the Boyer-Moore system,
as exemplified in the body of this report.

B. Relation to Other Computer Science Laboratory Projects

In our Computer Science Laboratory there have been, over the past
few years, a number of related projects concerned with program
verification, either in the use or development of these techniques. The
existence of these related efforts has been of mutual benefit to all of
the projects concerned. Thus, the present cffort has benefited from the
strong motivation provided by the need for enhanced deduction tools by
the application-oriented projects. Likewise, our project work during
the past year in particular has benefited by the availability of a
preliminary version of the Boyer-Moore theorem prover for recursive
functions. Conversely, some aspects of the efficient decision

s

procedures for Presburger arithmetic developed largely on this project
have been used both in our work for Rome Air Development Center (on
verifiers for several versicis of the JOVIAL language) and also in a new
version of the Boyer-Moore system. Still other application-oriented
projects have needed (or will shortly require) sophisticated deduction
tools for the verification of security and fault-tolerance properties of
system software. We list some of these related efforts below.

Our work for RFome Air Development Center has been 1in progress
almost continuously since 1975. Under contracts F30602-75-C-0042 and
F30602-76-C-0204 ("Rugged Programming Envirorment", Phases RPE/1 and
RPE/2) we developed early versions of program verifiers for (a subset
of) JOVIAL/J3 ([19] and for the JOCIT version of JOVIAL [20]. Our
current contract with RADC (F30602-78-C-0031) calls for the development
of a programming enviromment for JOVIAL~J73/I in '*i1ich an Air Force
programmer can design, implement, debug, and prove correctness for
programs in this language. This contract runs until October 1980. 1In
all three of these efforts we have made extensive use of deduction tools
developed initially under the present AFOSR contract.

Mutually beneficial relationships have arisen also with several
other govermment-supported projects in this laboratory. Among these
are:

"Equivalence-Preserving Transformations Between Programs,"

Principal Investigator: Robert S. Boyer; supported under
ONR Contract N00014-75-C-0816.

* "Theorem Prover for Recursive Functions," Principal
Investigator: Robert S. Boyer; supported under NSF Grant
DCR72-03737A01.

* "Mechanizing the Mathematics of Computer Program Analysis,"
Principal Investigators: Robert S. Boyer and J Strother
Moore; supported under NSF Grant MCS76-81425.

* "Methodology for Hierarchical Design, Development, and
Verification of Computer Programs,"” Principal Investigator:
Lawrence Robinson; supported under NSF Grant DCR74-18661.

* "Development and Evaluation of a Software Implemented Fault
Tolerant (SIFT) Computer," Project lLeader: J. Goldberg;
supported under contracts from NASA-Langley.

* "Development of Software Fault Tolerance Techniques,"
Project Leader: P. Michael Melliar-Srith; supported under
contract from NASA-Langley.

C. Report Overview

Section I1 describes research by R. Shostak on the use of cycle
graphs for decision procedures with respect to linear inequalities over
the integers. This work has provided an algorithm which is more
efficient than several variants of the Presburger algorithm described in
our earlier reports [21,3].

In Section III we provide in some detail an unconventional example
of program verification dealing with the consistency proofs for an
implementation (in pure LISP) of a verification condition generator
(VCG) for a simple block-structured programming language. This excrcise
is unusual in two respects--first, it combines hand prcofs with
mechanical proofs (the latter executed on the Boyer-Moore theorem prover
for recursive functions), second, it is only the second example of a WG
correctness proof of which we are aware (see ([22]). The proof is
structured into two overall parts. The first portion shows (by manual
proofs) that a set of algebraic specifications for the WG is consistent
with standard Hoare axioms for the target language. "Consistency" is to
be interpreted here in the (one way) sense that the Hoare axioms are
satisfied by any function that satisfies the algebraic specifications,
i.e., that the Hoare axioms are derivable from the specifications. It
is known that the converse is not true, since a Hoare axiomatization
does not determine a unique function for generating verification
conditions (nor even unique verification conditions). These algebraic
specifications are given in the style of Guttag (18]. The second
(mechanical) portion of the proof was carried out on the Boyer-Moore
system to show that the implementation satisfies the constraints of the

algebraic specifications. We believe that this work represents a first
step toward countering an objection frequently voiced about work in
program proving: that the researchers in this field do not prove
correctness for their own software.

Section IV of the report is concerned with the application of
inductive methods to set properties. The section focuses on a detailed
proof of one aspect of a clock synchronization algortithm recently
devised by Pease, Shostak, and Lamport. This proof was likewise carried
out on the Boyer-Moore theorem prover. The motivation for this
algorithm arose in connection with the SIFT project under way in our
Laboratory under NASA-Langley sponsorship. A paper describing the
algorithm is given in Appendix B.

Three other appendices contain subsidiary material as follows:
Appendix A contains traces of the operation of the recursive

function prover, and the formal definitions provided to that prover in
connection with the work reported in Section III.

Appendix C contains details of the machine proofs of the clock
synchronization algorithm described in Section IV.

Pppendix D summarizes the other activities (papers published and
conferences attended) that were carried out under this project during
the final year.

3
9

II DECIDING LINEAR INEQUALITIES
BY COMPUTING LOOP RESIDUES

A. Introduction

Procedures for deciding whether a given set of linear inequalities has solutions often
play an important role in deductive systems for program verification [19,23,28,30,32,33.
40.45). Array bounds checks and tests on index variables are but two of the many com-
mon programming constructs that give rise to formulas involving inequalities. A number of
approaches have been used to decide the feasibility of sets of inequalities. ranging from
goal-driven rewriting mechanisms [45,26,27,42] to the powerful simplex techniques
[29.31.35] of linear programming. The simpler methods are well suited to the small. trivial
problems that most often arise, but are insufficiently general. Simplex-based techniques. on
the other hand, are general and fast for medium to large problems. but they do not take

advantage of the trivial structure of the small problems encountered most frequently.

The algorithm presented here retains the generality needed in the exceptional case,
without sacrifice of speed and simplicity in the more typical situation. It builds on
V. Pratt’s observation [38.36] that most of the inequalities that arise from verification
conditions are of the form x <y + ¢, where x and y are variables and ¢ is a constant.
Pratt showed that a conjunction of such inequalities can be decided quickly by examining
the loops of a graph constructed from the inequalities of the conjunction. We generalize
this approach, first to inequalities with no more than two variables and with arbitrary
coefficients. and then to arbitrary linear inequalitics. Our generalization reduces to Pratt’s

test for inputs having the simple structure he describes.

The discussion is presented in six sections. Sections B and C are concerned with pre-
liminary definitions and with a statement of the method for inequalities with two vari-
ables and arbitrary coefficients. Secticn D discusses issues of complexity and usefulness
for integer problems. and relates the method to Pratt’s. Sections E and F deal with the

extension of the method to sets having strict inequalities and to sets with arbitrary linear

inequalities. The last section presents a proof of the theorem that underlies the method.

B. Definitions

Let S be a set of linear inequalities each of whose members can be written in the
form ax + by < ¢, where x, y are real variables and a, b, ¢ are reals. Without loss of
generality, we require that all variables appearing in S other than a special variable v .
called the zero variable, have nonzero coefficients. We also assume that v, appears only

with coefficient zero.

Construct an undirected multi-graph G from S as follows. Give G a vertex for each
variable occurring in S and an edge for each inequality. Let the edge associated with an
inequality ax + by < ¢ connect the vertex for x with the vertex for y. Label each vertex
with its associated variable* and each edge with its associated inequality. G is said to be
the graph for S.

Now let P be a path through G, given by a sequence ¥ys Bas o oo Vg of vertices

and a sequence ¢, ¢,, ..., e of edges, n > 1. The triple sequence for P is given by:

(al,b].cl),(az.bz,cz),...,(a b€ .

n’ °n

where for each i, 1 <i<n, av; +byv;, | < is the inequality labeling e,.** P is admis-
sible if, for 1 <i<n -1, b, and a;,, have opposite signs; i.e., one is strictly positive and

the other is negative.

Intuitively, admissible paths correspond to sequences of inequalities that form tran-
sitivity chains. For example, the sequence x <y, y <z, z < 3 gives rise to an admissible
path, as does

2x=23y-4,2y=24-2,-22%X

Note that the sequence:

X<y, y<z,-z<Tr

*In what follows, it is notationally convenient to write v for both the variable v and the vertex asso-
ciated with that variable.

**In the case where v; and v;,| happen to be identical (i.e., e; is a self-loop), an arbitrary choice is
made as to the ordering of the first two components of the associated triple.

cannot label an admissible path, since the coefficients of z have the wrong relative

signs.

A path is a loop if its first and last vertices are identical. A loop is simple if its

intermediate vertices are distinct.

Note that the reverse of an admissible loop is always admissible, and that the cyclic
permutations of a loop P are admissible if and only if a, and b are of opposite sign,

where (a,, b, Lo PR T c,) is the triple sequence for P. In this case, we say P is

s
permutable. Note also that, since v, appears in S only with coefficient 0, no admissible

loop with initial vertex v, is permutable.

Now define, for a given admissible path P, the residue inequality of P as the inequality
obtained from P by applying transitivity to the inequalities labeling its edges. For example.

if the inequalities along P are

N
£

x<2y+l, ys2-3z -z
we have:
x<2y+1<22-32)+1<22+3w)+1=06w+35

The residue inequality of P is thus x - 6w < 5.

More formally, define the residue r_ of P as the triple ap. bp, cp) given by:

P

(ap, bp, cp) =(a;, by, ¢} * (a3, by, c3) * ... *(ay, by, c,)
where (a;, by, ¢;) ... (a,, by. ¢,)is the triple sequence for P and where * is the binary

operation on triples defined by:

(a. b, ¢) * ¢a'. b'. ¢") = (kaa', -kbb', k(ca' - ¢'b))

andk=l,-
la’l

The residue inequality of P is then given by apx + bpy < cp, where x and y are the first

and last vertices, respectively, of P.

It is straightforward to show that * is associative, so that rp is in fact uniquely defined.
The idea that the residue inequality of a path is implied by the inequalities labeling the path

is expressed in the following lemma:

Lemma 1. Any point (i.e., assignment of reals to variables) that satisfies the inequalities

labeling an admissible path P also satisfies the residue inequality of P.

Pf. Straightforward by induction on the length of P.

C. Procedure for Inequalities with Two Variables

In the case where P is a loop with initial vertex, say, x, Lemma 1 asserts that any
point satisfying the inequalities along P must also satisfy apx + bpX < ¢,. If it happens
that ap + bp = 0 and cp < 0. the residue inequality of P is false, and we say that P is an

infeasible loop.

It follows that a set S of inequalities is unsatisfiable if the graph G for S has an
infeasible loop. The converse, however, does not hold in general. Figure 1, for example,
shows the graph for S = {x Sy, 2xtysSl,z<x,w<z,z<1l+tw,z=> ‘/z} Although

S is unsatisfiable, the graph has no infeasible loops. simple or otherwise.

o

FIGURE1 GRAPHGFORS=|x<y, 2x+y<l zsx,wsz z<w+1 z2"Y%|

10

The gist of our main theorem is that G can be modified to obtain a graph G' that

has an infeasible simple loop if and only if S is unsatisfiable:
Definition: Let G be the graph for S. Obtain a closure G' of G by adding. for each

simple admissible loop P (modulo permutation and reversal) of G a new edge

labelled with the residue inequality of P.

Note that closures are not necessarily unique, since the initial vertex of each permutable

loop can be chosen arbitrarily.

Theorem: S is unsatisfiable if and only if G’ has an infeasible simple loop.

Figure 2 shows the unique closure of the graph of Figure 1. Note that the only loop
of G contributing an edge to G' is the xyx loop. The voXzv, loop of G' is infeasible (hav-

ing residue <0, 0, -1/3)); hence the example S, according to the theorem, must be unsatisfiable.

FIGURE 2 CLOSURE OF G

We show later that any cyclic permutation of an infeasible permutable loop is itself
infeasible, and that the reverse of an infeasible loop is also infeasible. We thus have the

7 following decision procedure for satisfiability of S:

11

(1) The simple admissible loops of G are enumerated modulo cyclic permutation
and reversal, and their residues are computed. If any loops are found to be

infeasible, S is unsatisfiable.

(2) Otherwise, the closure of G is formed by adding a new edge for each residuc
inequality. The residues of all newly formed simple admissible loops are now
computed. If any are found to be infeasible. S is unsatisfiable. Otherwise S

has solutions.

Note that this procedure, as stated. does not actually construct a solution if S is
feasible. The proof of the main theorem, given in Section G. provides such a construction.

Note also that the new admissible loops formed in (2) must have initial vertex ¥y

D. Efficiency and Other Issues

Any implementation of the procedure must, of course, incorporate some means of
generating the simple loops of a graph. For this purpose, several algorithms exist
(Johnson [34], Read and Tarjan [39], Szwarcfiter and Lauer [43]) that operate in time
order iVl + |El), and space order IVI+ IEl, where € is the number of loops generated.
These algorithms are easily modified to generate only admissible loops without adversely
affecting efficiency. Since each loop has length on the order of IV, these algorithms
require little more time than that needed for output. A graph may. of course. have quite
a few simple loops - exponentially many (in |El), in fact. in the worst case. One can
show that the procedure we have described, like the simplex method. exhibits exponential

worse-case asymptotic behavior. (See also [37.44].)

In practice, however, one does not encounter such behavior. The sets of inequalities
that arise from verification conditions usually have the form of transitivity chains. The
corresponding graphs are treelike, seldom having more than a few Joops. Most of the
loops that do occur are 2-loops. which are easily tested at the time the graph is

constructed.

V. Pratt [38] has noted that these sets often fall within what he has termed
separation theory. All the inequalities of such sets are of the form x <y + ¢. The
residue of a loop whose labeling inequalities are of this form is given by one of

(1, =1, m), (<1, 1, m), where m is the sum of the constants ¢ around the loop. The graph

12

for a set S in separation theory is thus its own closure, so the main theorem of the last

section reduces, in this case, to Pratt’s observation that such a set S is infeasible if and
only if the sum of the constants around some simple loop is negative. Pratt notes that
this condition can be tested in order (V! + |El)3 time by taking a max/+ transitive
closure of the incidence matrix of the graph. In practice, however, it may be more effi-

cient to generate loops using one of the algorithms mentioned earlier.

Note that a set of inequalities in separation theory with integer constants is integer
feasible if and only if it is real feasible. While the main theorem therefore decides integer
feasibility in this case, it cannot decide integer feasibility in general. It has been observed
{41], however, that the transformations Bledsoe [24,25] describes for reducing formulas
in integer arithmetic to sets of inequalities tends to produce sets that are integer feasible
if and only if they are real feasible. The main theorem thus provides a useful, but not

complete. test for integer feasibility.

E. Strict Inequalities

The procedure is trivially generalized to handle strict inequalities (i.e., inequalities of
the form ax + by < c¢). Let an admissible loop be strict if one or more of its edges is
labeled with a strict inequality. A strict loop P with residue (ap, by, cp) is infeasible if
ap, + b, = 0and ¢, <O. If the definition of closure is now modified in such a way that
new edges arising from strict loops are labeled with strict inequalities, the main theorem
still holds.

F. Extension to Arbitrary Sets of Inequalities

The method can be further generalized to sets of inequalities with arbitrary coeffi-

cients and arbitrary numbers of variables.

The basic idea is illustrated by the following example. Consider the set
S={x<y,y<z,z<y-x+],x>2} ’

Note that the inequality z <y - x + | has three variables. As shown in Figure 3, we

choose two of the three (say z and y) as the endpoints of the edge corresponding to this

13

inequality in the graph G for S. The term (-x + 1) becomes the ‘“‘constant” of this

inequality. The residue of the only simple loop (y z y) is given by
(1, -1, 00 * (1, =1, -x + 1)
and is computed “‘symbolically” to obtain (1, -1, -x + 1). Note that this loop is

infeasible unless -x + 1 2 0. If the residue inequality -x + 1 = 0 is now added to the

graph. an infeasible simple loop (vyxv) results, thus making S unsatisfiable.

2SS Y =-x+%1

FIGURE3 GRAPHGFOR |x <y, y<z, z<y-x+1x2=2|

We now describe the procedure for an arbitrary set S. We assume that the variables
of S other than v, are ordered in some way. Each variable that is the lowest or second
lowest ranked variable in every inequality in which it appears is said to be a primar
rariable. We adopt the convention that the edge corresponding to a given inequality is
always attached to the two nodes corresponding to its primary variables. If it has only one¢
primary variable. one end is attached to vg, and if it has no primary variables. both ends

are attached to vy. The procedure is as follows:

(1) Compute a closure G" of the graph G for S as usual, evaluating residues ‘‘sym-
bolically™ as in the example. If G' has an infeasible loop. terminate returning

’

“unsatisfiable.” Otherwise, if all the variables of S are primary. terminate

returning “‘satisfiable.”

(2) Otherwise, repeat the procedure using the set of residue inequalities of G' in

place of S.

Note that the procedure must terminate since the number of non-primary variables must
decrease each iteration. One can prove as an extension of the main theorem that the gen-

eral procedure is complete as well as sound.

R. Tarjan* has observed that any set of inequalities can be polynomially transformed
to one with no more than three variables per inequality through the addition of new vari-
ables. The inequality w + x + y + z < 1, for example, is replaced by w + x < v, w+ x > v,
v+y+z<1. For sets with inequalities having no more than three variables, only two
iterations of the procedure are ever required. There does not seem to be any fast way to

transform a set of inequalities to one having inequalities with no more than two variables.

G. Proof of the Main Theorem

It follows from Lemma 1 and from the definition of closure that a set S of inequali-
ties (each having no more than two variables) is satisfiable if and only if S’ is unsatisfiable,
where S’ labels the edges of a closure of the graph for S. If we define a closed graph as

one that is a closure of itself, the main theorem can thus be restated as follows:

Theorem: 1f G is a closed graph for S, then S is satisfiable if and only if G has no

infeasible simple loop.

The proof of the theorem requires a number of technical lemmas. Proofs are omitted for

the more trivial of these.
Notation: Where P and Q are paths, let PQ denote the concatenation of P with Q.

Lemma 2. 1If P and Q are admissible paths, then PQ is admissible if and only if bQ and
a, are of opposite sign.

Notation: Let T = (a, b, ¢) be a triple of reals. Then T denotes the triple (b, a, c).

g T

Lemma 3. If Tl ,T, are triples, Tl * T2 = (Tz * 1) .
Corrollary 4. 1If Q is the reverse of an admissible path P, then rp = r.

Q"

Corollary 5. The reverse of an infeasible loop is itself infeasible.

- s 2
Private Communication. 15

Lemma 6. Any permutation of an infeasible permutable loop is infeasible.

Pf. Say P is infeasible and P’ is a permutation of P. Then there are paths Q and R such
that P = QR and P' = RQ. Thus,

= (kaQaR ; 'kabR . k(cQaR =Eg bQ)»
and

rp. = (k'ap ag, -k'bp by k'(cq ag - cobg)

a a
where k = — and k' = —2

. Note that by admissibility of P and P', both a, and
lagl lag| R

a, are nonzero. By infeasibility of P, agag - bQ bR =0 and k(cQaR = cx b)) < 0.

€D
) Q"R "Q

Lan b "o <0
B | =€
RQ aQ R

Q%%

<0 (since ap and bQ have opposite signs)
a
Q

k'(cR ag - chR) <0

Recalling that agag - bQ b = 0, we thus have that P’ is infeasible

Q.E.D.

-
Notation: Where u, v, w are reals, let u < v mean that u <vif w= 0and u > v if w <O0.

(=
P
Definition: Where P is an admissible path, the discriminant d, of P is given by

ap t b,
Note that an infeasible loop is one with discriminant oo,

16

a
Lemma 7. 1f PQ is an admissible loop from v, to v, then PQ is infeasible iff dp § dQ
d
s P
iff dP < dQ.

Notation: In the following, let (a;, b, ¢;), (a,, by, ¢,), €@, by, ¢c3), and (a,, by, cp),

respectively, denote the residues of P, P,, P;, and P.

Lemma 8. 1f G is closed and has an infeasible loop from v to v, G has an infeasible

simple loop.

Pf. Let P be a shortest infeasible loop from v, to v, in G. If P is simple, we are done.
Otherwise, since, by admissibility, the intermediate vertices of P are distinct from v,

P can be expressed P, P,P;, where P, is simple. We claim that P, is also infeasible.

Suppose not. Then either a, + b, =0 and ¢, = 0. or dpz is finite. In the for-
mer case, a, and b, have opposite signs. It follows from Lemma 2 that b, and a,

must as well, hence Pl P3 is admissible. Now since

a

2
p,p, = (0. by, ¢, * (a,, by, c2>=[72'| (0, -b, by, c;3;, - ¢c,b;)

we have:

; _c]az-czbl_c_2 zd —C—2—+d
F1P2 -b, b, b, b, h1 b, P

Since P is infeasible, we have from Lemma 7 that

¢ a
2 3
—b‘ + dpl > dp3
2
Thus. ; '
a3b

2
¢y +bydp > bydp,

SCy bzdP, <b, d,,1 (since a; and b, have opposite signs)

17

" bzdp1 < b:,dp3 (since ¢, =2 0)

b,

“dp, < dp,

1

a

3
Jodp, > dp3 (since b, and a; are of opposite sign).

1

But then P] P3 is infeasible by Lemma 2, contradicting our assumption that P is the

shortest such loop.

Now if dp, is finite. the closedness of G provides that some vertex x on P,
must be connected to Vo via an edge E labeled ax < ¢, where c/a is the discriminant

of some cyclic permutation P;_ (possibly = P,) of P,. We now have three cases:

Case I. P, is not permutable.

Then Py =P, a=a

sign. Also. a must be of this sign: hence both P, E and EP, are admissible. An

, +b,. ¢=c¢,, and by Lemma 2, a, and b, are of the same

argument similar to the one above gives that one or the other of P] E, EP2 must be

infeasible. contradicting the shortness of P.

Case II. P, is permutable and P}, = P,.

In this case. we have from Lemma 2 that a, and b, have opposite signs: hence b,
and a; do as well. An argument similar to that given earlier shows that one of

P, Py, P,E, and EP, must be infeasible, again contradicting the shortness of Py

Case I1I. P, is permutable and P'2 * Py

Let P, be the initial subpath of P, which terminates at x. and let P¢ be the final
subpath of P2 which originates at x (so that P, =P, P5). In this case. it can be
shown that P, P, is admissible, that one of P, P,E, EP P, is admissible, and that
one of these three paths must be infeasible. The shortness of P is thus once again
contradicted.

Q.E.D:

18

Theorem. Let G be a closed graph for S. Then S is satisfiable if and only if G has no

simple infeasible loop.

Pf. 1t follows from Lemma 1 that, if G has a simple, infeasible loop. S must be unsatis-
fiable. Conversely, suppose G has no such loop. We will show that S is satisfiable

by constructing a solution.

Letv,,..., v, be the variables of S other than v,. We construct a sequence
Voo Oyn = o= ¥, of reals and a sequence G, ¢ SR G, of graphs inductively as
follows:

(1) Letv, =0and G, =G.

(2) Suppose \ and G, have been determined for 0 < i <j<r. Let
sup, = mm{ d,IP is an admissible path from v; tovg in G _y and a, > 0}
infJ max {d IP is an admissible path from v, to v; in G and b, < }
(where it is understood that min@ = o and max(b —°°) Then let ’v‘ be any
value in the interval [mfj. supj] (We show momentarily that mf sup; <)
Let G. be obtained from Gj_l by adding two new edges from v; to v,

labeled Y VJ and v, > J.. respectively.

To ensure that the VJ."S and Gj's are well defined, we must show that. for
I1<j<r, mf < sup;. It will then remain to show that the Gj’s do indeed give a

solution for S.
We need the following claim:
Claim. (i) Forl <j<r, mt supJ
(ii) ForO<j<r, Gj has no infeasible simple loops.
Pf. By induction on j.

Basis. j = 0.

In this case, (i) holds vacuously. and (ii) holds since G, = G.

Induction Step. 0 <) <r
For (i), suppose, to the contrary. that infj > sup;. Then in G}_l admissible

paths P, . P, exist from v, to v,

; and v; to vy, respectively, with bp, <u,

19

ap, > 0, and dp, > dp,. By Lemma 2, P, P, is an admissible loop. and by
Lemma 7, P, P, is infeasible. By Lemma 8, then, GJ_] has a simple infeasible

loop. contradicting (ii) of the induction hypothesis.

For (ii), suppose Gj has an infeasible simple loop P. Since Gj‘1 has no
such loop, and since the loop formed by the two new edges added to Gj_l to
obtain Gj is not infeasible, P (or its reverse) must be of the form P'E, where E
is one of the two new edges (say the one labeled Vi < Vj: the other case is
handled similarly), and P’ is a path from v, to v in Gj_l. But then. by
Lemma 7, d,. > d; = Vj. contradicting C'J. > infj = dp.. (Note that b, <0
from the admissibility of P'E.)

Q.E.D.

It now remains to show that the Gj's satisfy S. So let ax + by < ¢ be an inequality
of S. We claim that aX + by < c. We treat the case in which a > 0 and b < 0: the
other cases are argued similarly. Let E be the edge labeled ax + by < ¢ in Gr. Then.
where E, is the edge labeled X < x in Gl, and E, is the one labeled y < y. E] EE,

forms an admissible loop. The residue of this loop is

(0, -1, %) * {a, b, &> * (1, 0, § =<0, 0, -aX - by + ©

Since. by the claim proved above, and by Lemma 8. G, has no infeasible loops from

to v, we have -a% -by + ¢ = 0. Thus ak + by < ¢ as required.
QEER.

Acknowledgments

The author gratefully acknowledges the insights provide ' by R. Tarjan. R. Boyer. J.
Moore, and M. W. Green.

20

i
-

IIT CONSISTENCY PROOFS FOR A SIMPLE VERIFICATION CONDITION GENERATOR

A. Introduction

This section of the report describes an application of both
mechanical and human theorem proving to the proof of correctness of a
simple verification condition generator (VCG). It will be recalled that
the WCG is an important component of most program verifiers. Its
purpose is to transform a program module, already annotated with
assertions, into a list of theorems from which the control semantics of
the program have been eliminated. That is, the input to a WG is an
annotated program module and the output is a list of ‘'staticized'
theorems that must be proved to verify that the program and assertions
are consistent. Thus, the WG must incorporate knowledge about the
semantics of the programming lamguage, in particular, its control
semantics.

It 1is, therefore, a matter of considerable importance that these
semantics are properly reflected in the WG. If they are not, the
verification conditions (VCs) generated by the WG may be inappropriate
to the program under verification. They may be either too weak or too
strong. In the first case the verifier may be able to report an
incorrect program as "verified" (unsoundness of the verifier). In the
second case the faulty Ws may be impossible to validate even when the
program is actually correct (incompleteness). Since theorem provers are
(necessarily) incomplete over most domains of reasoning, the latter
problem is less serious, but it is still a problem. However, to be able
to quarantee that a WG correctly incorporates the semantics of a
programming language. it is necessary (as with any formal proof of
consistency) to have a formal description of these semantics. This

description will be provided in Subsection C.

In Subsection B we define the concrete and abstract syntax for a
simple programming language SL that will serve as the vehicle for this
VCG verification.

21

Subsections D and E contain the proofs of consistency for the WCG.

These proofs are carried out in two stages:

* First, in Subsection D, we shall demonstrate by means of
hand proofs (i.e., conventional, but quite rigorous
mathematical arguments) that the formal semantic definition
for our language is satisfied by a set of algebraic
specifications (in the style of Guttaqg) for the
verification condition generator.

Second, we use the Recursive Function Theorem Prover of
Boyer and Moore to prove (entirely automatically) that an
implementation of WCG satisfies the algebraic axioms. The
detailed proof traces produced by this system appear in
Appendix A. However, the general discussion of what was
proved and how the Prover was set up to handle the proofs
is given in Subsection E below.

The first step in the consistency proof entails making a
correspondence for each of the statement types of the language between &
Hoare axiom for that construct and one or more of the algebraic
specifications. We have not seen arguments of this sort carried out
elsewhere before, at least not at this level of formalism. The proofs
are quite straightforward, but they were not entirely free from

surprises. In particular we have realized, as a result of carrying them

_out, that several quite distinct notions of "assertion" are current in

verification methodology, that each has distinct advantages and
disadvantages, and that they lead to different sorts of verification
conditions. In addition, each type is amenable to seemingly different,
but actually equivalent, axiomatizations in terms of Hoare logic. These
equivalent axiomatizations for the assertion constructs shed light on

the general problem of semantic definition.

The second step--that of mechanically proving consistency between a
LISP implementation of the function WG and its algebraic
specifications--may at first glance appear to be trivial, because of the
close correspondence between the LISP code of the implementation and the
LISP-like lamguage of the specifications. Moreover, unlike some WGs,
this implementation was written in pure applicative LISP. Nevertheless,
it turned out to be much harder actually to get the recursive function
theorem prover to prove all the required theorems than to carry out the

22

. —

hand proofs of the first step. In part this was due to technicalities
associated with the mechanical proving system, particularly conventions
regarding "quoted" atomic names and the need for specifying fixed
numbers of arguments for functions.

Same of the proofs were nontrivial because the implementation of
VCG to be verified makes use of an intermediate function VCR. This
function is like the specified function WG, except that it operates on
a reversed statement list for reasons of efficiency. Thus, WR is
recursive through CDRs (in the normal way) , whereas WG is specified by
defining it to recurse by removing the last element of the statement
list forming the first argument to WG. The structure of VR and its
relation to WG was, of course, reflected exactly in the definitions
provided to the Boyer-Moore system. Thus, the machine proof helps to
certify that no errors have crept into the implementation as a result of
this inversion of lists of statements in the recursive calls. 1In fact,
one such error was detected in the process of verification.

B. Syntax for a Simple Language

Below we give definitions of the syntax and semantics for the
simple block-structured language SL which serves as a vehicle for our
study of WG correctness proofs. Two versions of the syntax are given
for SL—a set of BNF productions for the concrete source language, and
(somewhat less formally) similar definitions of the syntax of abstract
forms of the nonterminals of the language. The abstract forms are
intended for use as internal representations to be input to a
verification condition generator.

1. Concrete Syntax for SL

The modified BNF syntax equations for SL are given with
nonterminals in lower case characters, and terminals shown in upper case
(or quoted where there is no corresponding upper case character). The

23

metalinguistic symbol '|' is used to separate alternative righthand
sides.

stats ::= stat | stats stat

stat ::= empty\stat | assert\stat | assume\stat
| prove\stat | asst\stat | block\stat
| ifelse\stat | while\stat | goto\stat
| label\stat | abort\stat

empty\stat ::= ';' | SKIP ';'

assert\stat ::= ASSERT pred ';'
assume\stat ::= ASSUME pred ';'

prove\stat ::= PROVE pred ';'

asst\stat ::=var ':=' expr ';'
block\stat ::= BBEGIN stats END
ifelse\stat ::= IF boolexpr THEN stat ELSE stat ENDIF

while\stat ::= WHILE '(' ASSERTING pred ')' boolexpr
DO stat ENDWHILE

goto\stat GOTO label '(' ASSERTING pred ')' ';'
label\stat ::= label ':'

abort\stat ::= ABORT ';'

The nonterminals pred, boolexpr, expr, var, and label are not
defined here. Any standard syntax for predicates, Boolean expressions,
expressions, (simple) variables, and label names, respectively will

serve.

2. The Mbstract Syntax

The abstract forms of the above constructs are LISP S-expressions
defined as follows:

assert\statA ::= '(' ASSERT predA ')’

24

|
|
f
E‘l
|

assume\statA :

.
[}

'(' ASSUME predA ')'

prove\statA : ' (' PROVE predA ')

asst\statA = '(' ':=' varA exprA ')’
block\stata := BBEGIN . statsA

ifelse\statA ::= '(' IF boolexprA statA statad ')’
while\statA ::= '(' WHILE predA boolexprA statA ')'
goto\statA := '(' GOTO label predA ')'
label\statA := '(' LABEL label ')'

empty\stata = '(' SKiP ')

abort\statA sie= (" ARERT ') °
statsA se= '('" statA ')' | statsA @ '(' statA ')!

statA ::= assert\statA | assume\statA | prove\statA
| asst\statA | block\statA | ifelse\stata
| while\statA | goto\statA | label\statA
| empty\statA | abort\statA

Notes: 1. '.' denotes Lisp cons
2. @ denotes LISP append, as an infix operator.
3. Each nonterminal ending in the letter A denotes the abstract
form corresponding to the concrete nonterminal with that A
deleted.

Just as with the concrete syntax, we do not specify the abstract
syntax for expressions, Boolean expressions, and predicates. What we
have in mind are the sorts of S-expression forms currently used in
several program verifiers [e.g., (PLUS x (TIMES y 2)) for the expression
x+y*z, and (AND (EQUAL A B) (LESSP C D)) for the Boolean expression
(A=B) & (C<D)]. However, the reader is free to imagine his own expression
language. Simple variables and labels are, of course, atomic words.

Thus they are not affected by the transition from concrete to abstract
syntax.

.y

e

N L

C. Formal Semantics for the Language SL

In general, three kinds of formal semantics have been used for

language specification--axiomatic, operational, and denotational
semantics. We shall be concerned here entirely with an axiomatic

definition since this type is most directly matched to the issues in
question-~the relations between preconditions and postconditions across
an execution of program segments. Moreover, both of the other kinds of
semantic definition entail gquestions, more intimately concerned with
execution models, which are 1largely irrelevant to the matter of W
generation. In brief, the other modes of semantic definition lie at too
detailed a level of abstraction--they say too much--whereas an axiomatic
definition tells us exactly what needs to be known about a language in
order to generate s for it.

The axiomatic method of semantic definition (due to Hoare [2])
requires the provision, for each statement construct of the language,
say the statement "stat", either an axiom (usually called a "Hoare
axiam") of the form:

P{stat)Q

or an inference rule (a "Hoare rule") of the form:

Dl,...,Dn
P{stat}Q

where P and Q are predicate expressions in some base logic, and the Di
are either similar predicate expressions, or other (Hoare) formulas of
the form p{...}g. The Di are called subsidiary deductions, and they
must be validated from axioms of the system, or by application of one or

more inference rules to these axioms. The axioms themselves are just
that--they are "facts" to be assumed as basic to the inference system.
In general, they define the semantics of the primitive statement types
of the language, such as assignment, jumps, abort, and also the
assertion constructs (assert and assume statements), which are needed in

order that Floyd-Hoare verification may be applied. The meaning of a

26

—— | N—

-

Hoare formula such as p{stats}q is that if execution of the program

segment stats is initiated at a control point where the predicate p
(over the program variables) is true, and if execution of stats comes to
a proper termination, the predicate g must be satisfied (by the current
values of the program variables) at that termination point. The
predicates p and q are referred to as precondition and postcondition,

respectively. The Hoare inference rules, in general, axiomatize the
campound statement types of the language (such as its block, conditional
or iterative statements), 1i.e., those which contain statements as
syntactic elements. The verification of such compound statements
clearly entails the establishment of subsidiary deductions about the
execution of their constituent substatements, hence the need for the
subsidiary formulas Di in these inference rules.

In addition to the Hoare inference rules relating to particular
language constructs, certain language independent rules are also needed
which are basic to the whole formalism. These basic rules are listed

below without discussion.

1. The Conseguence Rule

P->P1,P1{S}Q1,01->Q
P{S}Q

2. The Conjunction Rule

P{S}Q,P{S}R
P{S}]Q&R

3. The Disjunction Rule

P{S}R,Q(S}R
(P or Q) (SIR

4. The Concatenation Rule

P(S1}Q,QiS2]}R
PIST;S2IR

27

The above basic inference rules may be used, together with the

other (language-specific) rules and axioms in carrying out inferences
about program execution in the Hoare calculus. Note carefully that all

of the rules provide sufficient conditions for such inferences. One

must be careful to resist the temptation to apply them in the other
direction. The Floyd-Hoare approach, which we follow, proves (partial)
correctness by allowing a human prover (possibly aided by a machine) to
invent appropriate inductive assertions, Qi, such that all execution
paths from input to output are "covered" by proven Hoare formulas,
Qi{seg}Qj, where seg is the program segment lying between the assertions
Qi and Qj. In view of this relaxation, one can be content also with
axiomatizing the constructs of the programming language by Hoare
"sufficiency" rules, as we have done. This becomes significant
particularly for those constructs that implicitly call for the invention
of inductive assertions, e.g., the iterative (while...do) statement.

Thus, our viewpoint regarding proof of partial correctness is that
the program to be verified has already been annotated with inductive
assertions at all necessary points. These include loop invariants for
the while...do statement (already mentioned) and mandatory assertions at
every labelled statement. The latter may not always be necessary (since
scrie labels may never be targeted), but the job of the WG is greatly
simplified if we make this assumption, and if we, moreover, assume that
a preprocessing of the program has incorporated the target label
assertion lexically into each goto statement addressing this label.
Thus, we shall write gotos as:

QOTO label (ASSERTING pred) ;
rather than simply as:

Q0TO label;

As we shall see, this convention permits us to express the Hoare
rule for GOTOs as:

28

. A w—— 4

P->pred
P{GOTO label (ASSERTING pred) }O,
or, still more simply as an axiom:

QOTO Axiom: pred{GOTO label (ASSERTING pred) }Q.

The more wusual alternative 1is to posit the axiom, P{GOTO
label} false. Then, since false->Q is tautologous, one has (by the
Consequence Rule)

P{GOTO label}pred
regardless of the predicate pred! We find the first approach more
intuitive and satisfying.

Similarly, the Hoare rule for WHILE statements is usually given as:

I&B{S}I
I{WHILE B DO S ENDWHILE}I&™B

This latter entails the invention (by the human or machine
verifier) of the auxiliary assertion I, which does not occur in the
WHILE statement itself. It seems more natural to incorporate the
inductive assertion I directly in the iteration statement, in the form:

WHILE (ASSERTING I) B DO S ENDWHILE.

This suggestion has already been made from several quarters (see, e.g.,

Wegbreit [46]), often with the use of other key words, such as
"maintaining", in place of "asserting".

One further notion is worth mentioning before we proceed on to more
specific matters. We wish to single out those Hoare axioms of the form:

pre{S}post

where post = Q is a (free) predicate variable, rather than an arbitrary
expression, but where pre may still be any predicate expression.
Examples of this form are:

29

Q&A{ASSERT A}Q
Q{SKIP}Q

A->Q{ASSUME A)Q

We shall refer to such special Hoare axioms as being in backwards
canonical form. The reason for this name is that such rules correspond

directly to definitions of Dijkstra's [47] predicate transformer wlp
(the "weakest liberal precondition" operator). More precisely, from the
rule A->Q{ASSUME A}Q on can infer that (A->Q)->wWlp(ASSUME A, Q). In
this simple case it also makes sense to take A->Q as the definition of
wlp(ASSUME A, Q), not just as an upper bound for it. Thus,

wlp(ASSUME A, Q) = [A->Q]

may be used as a definition for the semantics of the ASSUME statement in
Dijkstra's terms. It is easily verified that all of Dijkstra's 'axioms'
for wlp are satisfied here. In other cases the identity between
wlp(S,Q) and the precondition of a Hoare axiom in backwards canonical
form does not follow; one can only assert the weaker implication, pre-

>wlp(S,Q).

Observe also that an axiom that is not in this canonical form,
e.g., the axiom:

O{ASSUME A}Q&A

can sometimes be transformed into an equivalent one in canonical form.
In the example cited, since Q is a free predicate variable, we may

replace it by A->Q', yielding the axiom:
A->Q'{ASSIME A} (A->Q')sA

which is equivalent to A->Q'{ASSWME A}Q'&A since (A->Q')&A = Q'&A is a

tautology. This version also implies

(A->Q') { ASSUME A}Q'

30

by the Consequence Rule (since Q'&A->Q'). But, this axiom differs from
the original (canonical) ASSUME axiom only in the name of the free
variable Q. Conversely, the canonical form implies the noncanonical
version by replacing Q' by Q&A, noting that Q->(A->Q&3), and using the
Conseguence Rule.

We now present, without further discussion, the Hoare-type axioms
and rules defining the semantics of the language SL.

3.1 ASSERT Axiom
A{ASSERT A}A
Alternative equivalent form of Axiom 3.1:

3.1a: P->A8A->Q
P{ASSERT A}Q

3.2 ASSUME Axiom
A->Q{ASSUME A}Q

Alternative eguivalent form of Axiom 3.2:
3.2a: Q{ASSWME A}Q&A

Note: Axiom 3.2 can also be used as an axiom for assertions that
are subject to run-time checking (i.e., so called "checked assertions";
see e.g., the axiomatization for EUCLID in London, et al., [4]).

3.3 PROVE Axiom
Q&A{PROVE A}Q&A

Alternative equivalent forms of Axiom 3.3:
3.3a: Q&A{PROVE A}Q

3.3b: Q->A
Q!PROVE A}Q

Notes: 1. Axiom 3.3 is given by London, et al. [4] as an axiom for
unchecked assertions in EUCLID.

2. The difference between ASSERT and PROVE is seen to be that
ASSERT serves as a camplete break between Ws, whereas PROVE
does not create a new VC, but merely forces verification of
its predicate while conjoining this predicate to any other
preconditions for use in proving the next ASSERT/PROVE to be

31

encountered. ASSWME plays a role similar to this last aspect
of PROVE, but, of course, does not demand proof for its predi-
cate. Some authors have used ASSERT in the sense which we use
PROVE here.

3.4 Assignment AXIOM
Q(e/x) {x:=e}Q

Note 1. The notation 'Q(e/x)' stands for the result of replacing
each (free) occurrence of x in Q by a (free) instance of the expression
e. If this substitution results in the capture of free variables in e
by quantifiers occurring in Q, the quantified variables must be
systematically renamed (by fresh variables) before carrying out the
indicated substitution.

Note 2. This axiom assumes that evaluation of the expression e

produces no side effects.

3.5 BEGIN...END Block Rule

P{BEGIN stats END}Q
P{stats}Q

3.6 Conditional Rule

PsB{statl}Q,Ps B{stat2}Q
P{IF R THEN statl ELSE stat2 ENDIF}Q

3.7 WHILE Rule

IsB{stat}I
T{WHILE (ASSERTING I) B DO stat ENDWHILE}I&"B

Alternative equivalent form for Rule 3.7

3.7a: P->1,IsB{stat}I,I& " B->Q
P{WHILE (ASSERTING I) B DO stat ENDWHILE}Q

3.8 GOTO Axiom
A{GOTO Lab (ASSERTING A) }Q

Alternative equivalent form for Axiom 3.8

3.8a: P->A
P{GOTO Lab (ASSERTING A) }Q

32

Note: Our form of GOTO, assumes that the assertion A occurring at
the targeted label appears explicitly within the "asserting" clause of
the goto statement. This assumption requires that every label in the
program be followed by an ASSERT statement, and that (if necessary) a
preprocessor place these assertions redundantly within the corresponding
goto statements.

3.9 LABEL Axiom

Since the label's role is taken over by the above GOTO convention,
labels became no~ops to the verification condition generator. Hence,
the semantics of the label\stat (to the WG) are given by:

Q{LABEL Lab}Q

3.10 Empty Statement Axioms

0{; 10
Q{SKIP}Q

3.11 ABORT Axiom
P{ABORT} false

D. Specifications of a WG for SL—Consistency with the Axioms.

Algebraic Specifications

In this subsection we present, again without much discussion, a set
of algebraic specifications for a verification condition generator (VCG)
that are rigorously based on the Hoare-type axioms listed above. The
specifications we present here are based on a set due to D. Musser of
the USC Information Sciences Institute (private cammunication). We have
added the WHILE specification (S7) and the ABORT specification (S11) to
Musser's set. In several other cases (notably for the IF statement
specification S6), we have also experimented with alternative forms, but
we decided to stick with Musser's versions, even though they entail some
duplication of VCs.

These specifications form a set of 12 rewrite rules specifying a
function WG (which 1is supposed to compute a list of wverification
conditions consistent with the above Hoare rules) whenever WG is

33

" | — o

supplied with two arguments--(1) a list of abstract statement forms A
representing a segment of SL source code, and (2) an arbitrary
postcondition predicate, Post. Thus, WG has the functionality:

VCG: StatList x Pred -> PredList

where StatList is the set of all legal program segments, Pred is
the set of all (abstract form) predicate expressions, and PredList is
the set of all finite (length n=1,2,...) lists of predicates from Pred.
Post is an arbitrary member of Pred, and StL is an arbitrary member of
StatList. StatList includes the empty program, denoted by NIL. We use
angle brackets to represent lists, and the infix operator @ to denote
"append" on lists.

We specify:

S0: VCG(NIL, Post) = <Post>

S1: VCG(StL; ASSERT A, Post) VCG(StL, A) @ <A->Post>

S2: WVCG(StL; ASSUWME A, Post)

VCG(StL, A->Post)
S3: WVCG(StL; PROVE A, Post) = VCG(StL, A) @ VCG(StL, A->Post)

S4: WCG(StL; x:=e, Post) = <Post(e/x)>

S5: WCG(StLl; BEGIN StL2 END, Post) = VCG(GtLl @ StL2, Post)
S6: WCG(StL; IF B THEN statl ELSE statz ENDIF, Post) =
VCG(StL; ASSWME B; statl)

@ VCG(StL; ASSUME (NOT B); stat2, Post)

S7: WCG(StL; WHILE (ASSERTING I) B DO stat ENDWHILE, Post)
VCG(StL, I)
@ VCG(ASSUME I; ASSUME B; stat, I)

@ <I&"B->Post>

S8: WCG(StL; GOTO Lab (ASSERTING A), POST) = VCG(StL, A)

S9: WCG(StL ; , Post) = VCG(StL, Post)

34

¥ S10: WVCG(StL; SKIP, Post) = VCG(STL, Post)

S11: WVCG(StL; ABORT, Post) = VCG(StL, true)

G T s e

In the next part of this Subsection we present detailed proofs that

3

the specifications S0-S11 for WG are consistent with the Hoare axioms
and rules appearing in Subsection C.

Manual Consistency Proofs

We show here, by manual proofs, that the algebraic specifications
S0-S11 given above for the function WG are consistent with (i.e., imply
the validity of) the Hoare-type axiomatization (also given above) of the
simple programmirg language. Each proof consists of applying a
particular WG specification (say, the one for "stat") to the statement
list ASSUME P; stat and an arbitrary postcordition Q. We then expand
this application according to the specification, applying various
reductions, and we interpret the final result, WG(ASSUME P; stat, Q) =
L, by means of the following:

Correspondence Rule:

If VWCG(ASSUME P; stat, Q) = <Pl,...,Pn> then the Hoare-type rule:

P1,P2,...,Pn
P{stat}Q

is satisfied.

The Correspondence Rule serves to establish the connection between
the Hoare formalism and the WG function, in that the elements of the
list L obtained by expanding the application WCG(ASSUME P; stat, Q) are
to be interpreted as sufficient conditions Pl1, P2,..., Pn to infer that
P{stat}Q. In some cases these subsidiary deductions may themselves be
relations of the form, WCG(statements, post) = L, and consequently they
also need to be interpreted as Hoare statements, pre{statements}post.
Usually, however, the Pi will simply be statements in the base logic.

It should be noted that the proofs also make use of the four

fundamental rules of the Hoare formalism given earlier. Their use in

35

i _ ——

proving the . wjuage-dependent rules 1is legitimate since they are basic
to the Hoare rformalism and are independent of any particular language.

1. ASSUME Statement

VCG(ASSUME P; ASSWME A, Q)

VCG(ASSUME P, A->Q)

<P => (A->0)>
Hence, by the Correspondence Rule,

P-> (A->Q)

P{ASSUME A}Q

Specialization of P to A->Q yields:
A->Q{ASSUME A}Q

2. ASSERT Statement
VCG(ASSUME P; ASSERT A, Q)

VCG(ASSUME P, A) @ <A->Q>

<P->A> @ <A->Q>

<P->A, A->Q>

Hence, by the Correspondence Rule,

P->A, A~>Q
P{ASSERT A}Q

Specialization of both P and Q to A yields:
A{ASSERT A}A

3. PROVE Statement
VCG(ASSUME P; PROVE A, Q)

VCG (ASSUME P, A)

@ VCG(ASSUME P, A->Q)

<P->A> @ <P => (A->Q)>

<P->A, P&A->Q>

36

By the Correspondence Rule we obtain:

P->A,P&A->0
PIPROVE AJQ

Letting P = Q&A, we find:

Q&A{PROVE A}Q

A familiar alternative form (equivalent to the Hoare-type axiom
just derived) is obtained by replacing Q by Q&A:
O&A{PROVE A}Q&A

This alternative form also clearly implies the first form, by the
Conseguence Rule; hence, the two forms are equivalent.

4. Assignment Axiom
VCG(ASSUME P; x := e, Q)

VCG(ASSUME P, Q(e/X))

L}

<P -> Q(e/x)>
By the Correspondence Rule,

P->Q (e/x)

P]x:=eiQ
Letting P=Q(e/x) yields:
O(e/x) {x:=e}Q

5. Block Rule
VCG (ASSUME P; StLl; BEGIN StL2 END, Q)

= VCG(ASSUME P; StLl; stL2, Q)
from which the Correspondence Rule directly yields:

p{StLl; StL2}Q
P{StL1; BEGIN StL2 END}Q

6. Conditional Rule
VCG(ASSUME P; IF B THEN S1 ELSE S2 ENDIF, Q)

= VCG(ASSUME P; ASSWME B; S1, Q)

37

@ VCG(ASSUME P; ASSUME “B; S2, Q)

from which direct applications of the Correspondence Rule yield:

P{ASSWME B; S1}Q,P{ASSUME “B; S2}Q
PIIF B THEN S1 ELSE S2 ENDIFJQ

However, the relation P{ASSUME B; S1}Q is implied by pPsB{S1}Q, and
similarly P{ASSUME "B; S2}Q is implied by P&™B{S2}OQ. (These
implications follow from the Rule of Concatenation and the ASSUME
Axiom]. Hence, from the above rule we also obtain:

P&B{S1}Q,Ps"B{S2}Q
P{IF B THEN S1 ELSE S2 ENDIF}Q

which is the desired Hoare Rule for conditional statements.

7. WHILE Statement
VCG(ASSUME P; WHILE (ASSERTING I) B DO S ENDWHILE, Q)

VCG(ASSUME P, I) @ VCG(ASSUME 1&B; S, I) @ <I&"B->Q>

<P->I> @ VCG(ASSUME 1&B; S, I) @ (I&™B->0Q>
Using the Correspondence Rule we find that:

pP->I,I&B{S}1,I&"B->Q
lWHILE (ASSERTING T) B DO S ENDWHILE}Q

By letting Q be I& B we obtain:

pP->I,1&B{S}I
lWHILE (ASSERTING I) B DO S ENDWHILE}I&™B

Additional simplification is obtained by letting P=I, so that:

I&B{s}r
T{WHILE (ASSERTING I) B DO S ENDWHILE}I&™B

which is the usual Hoare rule for while...do statements (and also our
WHILE Rule 3.7).

8. GOTO Axiom
VCG(ASSUME P; GOTO L (ASSERTING A), Q)

= VCG(ASSUME P, A) = <P->A>

38

Hence, by the Correspondence Rule:

. P->A
P{GOTO L (ASSERTING A)}Q

This can be simplified to the (equivalent) form:

A{GOTO L (ASSERTING A)}Q

9. No-Op axiom

If we let SKIP stand for any of the no-op statements of the
lanquage,
VCG(ASSUME P; SKIP, Q) = VCG(ASSUME P, Q) = <P->Q>

Hence, by the Correspondence Rule:

P->Q

P{SKIP}Q
The simplest form is obtained by letting P=Q, so that we get the axiom:

Q{SKIP}Q

10. ABORT Axiom
VCG(ASSUME P; ABORT, Q) = VCG(ASSUME P, true)
= <P->true> = <true>
Hence, by the Correspondence Rule:
P{ABORT}Q

holds for any predicates P and Q. In particular, we have the standard
form of the ABORT axiom:

P{ABORT} false

where Q=false, and from which P{ABORT}Q follows from the Consequence
Rule, since false->Q.

This concludes the proofs of consistency between the axiomatization
and the algebraic specifications for WCG.

39

E. Verification of the Implementation in Terms of the Specifications

We present here the second portion of the consistency proof for
WG. This portion of the proof verifies that the LISP implementation
(or, more precisely, a paraphrase of that implementation in the theorem
prover's syntax) 1s consistent with the algebraic specifications
discussed above. The proof is carried out entirely on the Boyer-Moore
theorem prover [48] for recursive functions. The theorems to be proved
are (paraphrases of) the algebraic specification equations. There is a
separate proof for each algebraic specification equation. Once having
been initiated (by calling the theorem prover function PROVE on a
theorem), the proof of each theorem proceeds automatically. However,
there is a substantial amount of information that must be supplied to
the theorem prover prior to that point. In this subsection we show and
discuss this initial "setup” process. The detailed proof traces of the
individual automatic proofs are collected in Appendix A, along with the
verified LISP code and the corresponding definitions supplied to the

prover.

1. Definitions Supplied to the Theorem Prover

To be able to prove a theorem containing references to function
symbols (or predicate symbols) the theorem prover must previously have
been supplied with (recursive function) definitions for those symbols.
The theorem prover cames already supplied with definitions for most
list-processing primitives (such as CONS, CAR, CDR, APPEND, REVERSE, and
BOUAL) as well as with the arithmetic primitives (PLUS, TIMES,
DIFFERENCE, QUOTIENT, and EXPT). The latter, however, are not needed
for the proofs in question.

Same of the definitions we needed to supply are simply
(nonrecursive) abbreviations, e.g., it 1s convenient to use the LISP
primitive LIST (which happens not to be incorporated into the prover
initially) as LIST(x) <- (CONS x "NIL"). [The reason why LIST was not
built in is, apparently, because LISP "LIST" is usually defined for any

40

number of arguments, and the theorem prover insists on a definite fixed
number. Since one argument suffices for our purposes, this is what we
have done.] Note also that the LISP atom NIL appears as the string
constant "NIL" in the prover's syntax; it is identical to the value
returned by the zero-argument function (NIHIL). Many of the definitions
for the syntax of the language SL are also nonrecursive. For example,
an assignment statement is defined by the predicate ASSTP as defined for
the prover by the cammand:

DEFN(ASSTP (S) (AND (EQUAL (CAR S) ":=") (PLISTP (CDR S))))

The prover predicate PLISTP is true for proper lists, i.e., those
ending in "NIL", and for "NIL" itself. ‘Thus, (ASSTP S) will be true

precisely for proper lists whose car is the assignment key word ":=" of
Sk

Similar definitions suffice for the other types of legal statements
of SL. For example, it 1is wuseful to lump together all the no-op
statements of SL into a single predicate NULLP defined by:

DEFN(NULLP (S) (IF (LISTP S)
(OR (EQUAL (CAR Sj "SKIP")
(EQUAL (CAR S) "LABEL"))
(EQUAL S "NIL")))

These definitions and the other syntax predicates have been
combined into a single predicate LEGALSTATP such that (LEGALSTATP S) is
true if and only if S is a legal statement of the language SL. Because
the campound statements, e.g., the IF statement, contain statement
components, LEGALS™ATP is a recursive function. A separate predicate
LEGALP is used to define the notion of a legal program (i.e., "NIL" or a
list of legal statements). Thus, LEGALP is also recursive and calls
LEGALSTATP.

Recursive definitions pose a special problem for the present
version of the Boyer-Moore theorem prover in that one must be able to
convince the prover that such definitions are well-founded, i.e., that

S ——

the recursive function in question is total. The prover knows about
such functions as the LISP function COUNT, and is generally able to
deduce well-foundedness where the recursive calls take place on CDR'd
argunents. When the system is unable to deduce well foundedness it
emits a FAILED message after an attempted DEFN definition, but
tentatively accepts the definition anyway, with a caveat to the user
that the deductions may be unsound as a result. Incidentally, the DEFN
mechanism absolutely precludes giving any mutually recursive
definitions. Thus, it would have been impossible to define LEGALSTATP
in terms of LEGALP, while also defining LEGALP in terms of LEGALSTATP.
Since the latter definition 1is essential, we had to forego defining
LEGALSTATP (for BEGIN blocks) by a recursive call to (LEGALP (CDR
block)) .

The main definitions supplied to the prover concern the WG
implementation itself (the syntax predicates discussed above are rather
subsidiary, but they are convenient to use in the WG functions). The
WG is implemented entirely in pure LISP (no SETQ's or PROGs are used).
The top-level function WS accepts two arguments (the first must be a
legal statement list and the second a logical formula) and returns as
its value a list of logical formulas purporting to be the verification
conditions (VCs) for that statement list and postcondition. WG is
essentially a backward-acting verification condition generator, i.e., it
"pushes back" the second argument past the last statement in the
statement list to determine the weakest precondition holding at the
point just ahead of this last statement. WG then proceeds by calling
itself recursively on the rest of the statement list with this modified
postcondition. Since list-processing recursion is more efficiently
handled by recursing down a 1list by CARs and CDRs, the actual
implementation defines WS(L, Q) in terms of a function WR which acts
on the reversed list RL = (REVERSE L). Thus,

WS (L,Q) <~ (VCR (REVERSE L) Q)

where WCR(RL, Q) is defined by the usual CAR/CDR recursion, with a

separate kind of action depending on the syntactic type of the statement
(CAR RL)., Thus, for example, if (CAR RL) [remember: this is the last
statement in L] is a no-op statement such as "NIL", (SKIP), or (COMMENT
text...), then VCR(RL, Q) simply returns (VCR (CDR RL) Q). That is, the
no-op statement 1is ignored by the WG. The reader is referred to
Appendix A for the details of this and other definitions.

It would be best, however, to comment here on the syntactic
differences between the actual LISP code implementing the WCG and the
corresponding definitions made to the prover. The key words of the
language SL, such as 1IF, BEGIN, :=, and WHILE appear in the
implementation as quoted atoms. Their counterparts in the prover
syntax, however, are required to be quoted character strings (e.g.,
"IF", "BBGIN", and so forth). The actual LISP function LIST (of an
arbitrary number of arguments) cannot be used in the prover (as already
mentioned above), so that it is necessary to expand out, e.g., (LIST a b
c) to (CONS a (CONS b (CONS c "NIL"))). Because LIST has been defined
for the single-argument case, this can (but need not) be shortened to
(CONS a (CONS b (LIST c))).

Occurrences of the prover function PLISTP have been introduced in
various places in the prover definitions (where nothing corresponding to
this appeared in the LISP code). These introductions proved necessary
to allow the prover to attempt reasonable inductive proofs (by inducting
on the list structure of those arguments forced to satisfy PLISTP).

The statements (theorems) to be proved by the Boyer-Moore system
also require transcription before input to the system. In fact, the
syntactic differences are greater for these theorems than they are
between LISP code and prover DEFN forms. Consider, for example, the
specification for WS when applied to a (legal) statement list ending in
an ASSERT statement. When written in conventional (concrete) form this
specification appears as:

VCS(STL; ASSERT A, Q) = VCS(STL, A) @ <A => Q>

This form is certainly highly readable. We could have insisted
(with some loss in readability) on writing this specification in a LISP-
like prefix form such as:

(EQUAL (VCS (APPEND STL '((ASSERT a))) Q)

(APPEND (VCS STL A) ' ((IMPLIES A Q)))

where the prefix function symbols EQUAL, APPEND, and IMPLIES replace the
respective infix forms =, @, and ->, and the metalanguage angle brackets
< >, denoting an explicit list, are replaced by LISP parentheses.
However, even this mild paraphrase does some violence to the real
issues, for writing ' ((ASSERT A)) makes A a quoted atom (instead of a
free variable denoting a logical formula). Even worse, Q is treated as
a quoted atom in one place and as a variable (to be evaluated) in
another. In order for the Boyer-Moore system to handle this theorem
properly we need to take into account the fact that A and Q are not
quted atoms (indeed, the prover provides for no such data type; it
would have to be a string-quoted expression, viz., "A"). A little
thought shows that what is needed is:

(EQUAL (VCS (APPEND STL
(CONS (CONS "ASSERT" (CONS A "NIL")) "NIL"))
Q)
(APPEND (VCS STL A)
(CONS (CONS "IMPLIES" (CONS A (CONS Q “"NIL")))

“NIL")))

This could have been abbreviated somewhat by making use of the
single~argument function LIST:

(EQUAL (VCS (APPEND STL (LIST (CONS "ASSERT" (LIST A))))

Q)

(APPEND (VCS STL Q)

(LIST (CONS "IMPLIES" (CONS A (LIST Q))))))

Either of the two preceding versions could have been supplied to
the theorem prover as theorems to be proved, and the proof would have
succeeded. In fact, we took the precaution of adding as an additional
hypothesis the fact (LEGALP STL) which is implicit in the original
formulation. After all, if STL is not a legal list of SL statements, we
do not care what WCS would compute. In practice, however, the
definitions supplied to the theorem prover must provide a default in the
event of illegal inputs. We choose this to be the (string) constant
"UNDEFINED", as can be seen from the definition of WCR. In a practical
form of the implementation we would probably quard against illegal
inputs of this sort by providing syntactic tests with error invocation
upon failure. [In fact, exactly this device was used in another version
of this WG. It has been seen (along with other similar tests) to be a
useful debugging feature)]. In a finished system, i.e, one camprising a
front end parser, such syntactic checks are carried out by the parser,
and can therefore be eliminated from the WCG.

As already mentioned, the detailed proof traces resulting from the
action of the Boyer-Moore system on the (transcribed) algebraic
specifications are shown in Appendix A. The reader 1is encouraged to
examine these traces carefully, noting, in particular, that the fairly
voluminous explanatory output shown there is- automatically generated by

the system to help the reader follow the 1line of reasoning established
by the prover. We have not added any parenthetic remarks or comments
between any invocation of PROVE and the final PROVED which terminates a
successful call to the prover.

Unfortunately, it has not been possible to get the prover to verify
consistency between the implementation and the IF axiom. We believe
that this is due to a quirk in the prover rather than to any basic flaw
in either the way the theorem has been set up or in the DEFNs provided
to the prover. Part of the problem is the propensity of the prover to

45

exhaustively consider all possible statement types for the statements
S1, S2, appearing in an IF statement, "IF B THEN S1 ELSE S2". Since Sl
and S2 can themselves be IF statements, a rather sophisticated induction

is called for--one which the prover seems to be unable to provide
automatically. Another problem noted in attempting this proof is that
the prover attempts to induct on the list structure of the Boolean test
B of the IF statement--an induction that is doamed to failure. In our
opinion the proof should be capable of success without recourse to
either sort of induction. We are still working on this problem and hope
to overcame it by proving some prior lemmas by means of the prover
function PROVE.LEMMA. This function is like PROVE but also stores away
the resulting theorem as a rewrite rule or as an induction lemma for
future use. In this way the user of the system can exercise some
control over the deduction strategy taken by the prover.

F. Same Observations

Admittedly, the language SL for which we have designed and verified
a verification condition generator is an extremely simple one. Even
though it includes structured conditional and iteration statements, as
well as gotos and an abort statement, many aspects of modern high-level
languages were not covered, such as name scoping, procedure and function
calls (with or without side effects), modules, case statements, jumps
out of blocks, exception handling, or parallelism. It remains to be
seen whether similar means will suffice to provide correspondingly
convincing proofs of correctness for a more realistic WG. However, the
statement types of SL are virtually certain to be part of any reasonable
block-structured language. One suspects that proofs of the WG features
for these statements would not be radically altered by virtue of
interactions with other constructs (except for side effects). Still,
just writing a WG for one of the more realistic lanquages is an
ambitious undertaking, let alone carrying out a formal proof of its
correctness. Nevertheless, we hope that we, or others, will be inspired
to undertake such an exercise in the near future.

46

P—

One case in point is a WG that was designed and implemented by us-
for a subset of JOVIAL-J3 (JOCIT version) under contract with Rome Air
Development Center [20]. We were reasonably confident at the time of
its completion that this implementation was substantially correct for
the subset it was supposed to handle. Subsequent analysis by the same
techniques used above (hand methods only—no machine proofs) revealed
that there were, in fact, several bugs. These were not revealed in the
course of routine testing, simply because none of the test programs
contained features that would exercise the faulty code. Although the
bugs were not serious ones, and were easily repaired, it 1is still
disturbing to us that they could occur. This confirms our feeling that
there is no substitute for some level of formality both in the
description of program semantics and in the carrying out of correctness
arguments for a WG, if that WG is to be considered reliable.

Under our current contract with Rome Air Development Center we are
building a much more ambitious program verifier, this one for JOVIAL-
J73/I. The statement types of SL were chosen partly because they are a
core subset of J73/1I that would need handling in any case. As our
effort progresses with J73/I, we propose to subject the design of its
verification condition generator to the scrutiny used above for SL, even

though the level of formality may be necessarily somewhat less severe.

47

IV INDUCTIVE PROOF OF SET PROPERTIES

This section is concerned with the application of inductive tech-
niques to the verification of programs involving set constructs. The
usefulness of set-theoretic structures in the specification of algorithms
is clear; the power and richness of expression that set-theory provides is
affirmed by its standing as the formal basis of almost all of mathematics.
Unfortunately, set-theoretic constructs do not directly lend themselves to
recursive formulation, and hence, to inductive proof. (Indeed, the princi-
ple of induction is not even stated as an axiom of set~theory, though a
version of it can be derived.) The essential difficulty lies in the depen~-
dence of inductive methods on the existence of a well-founded partial
ordering over some aspect of the structure to which they are to be applied.
Arbitrary sets, of course, do not impose an order upon their constituent
elements; more to the point, the order in which elements are added in the
construction of a set is not reflected in the end product.

Nevertheless, it is possible to formulate properties of sets in a re-
cursive fashion, at least in the finite case. The basic idea is to map each
finite set to some permutation (represented as a List) of its members. For
each set operator or predicate, one finds a corresponding list operator
or predicate that homomorphically preserves the value or truth of its
correspondent, modulo representation. The list operators and predicates
are defined in a recursive manner.

Suppose, for example, one wishes to prove that A.v B=B Y A for

arbitrary finite sets A and B. We define the recursive function UNION for

lists by:

49

PRECEDING FAGE LLANKeNOT FILIED

Na

4.
:
h

E
.
b

UNION(X Y) =
(IF (NLISTP X)
¥
(IF (MEMBER (CAR X) Y)
(UNION (CDR X) Y)
(CONS (CAR X) (UNION (CDR X) Y))))

where IF is the conventional 3-placed conditional.

Similarly, the predicate SETEQUAL is defined by:

SETEQUAL(X Y) = (AND (SUBSETP X Y) (SUBSETP Y X)),

where SUBSETP(X Y) =

(IF (NLISTP X)
il
(AND
(MEMBER (CAR X) Y)
(SUBSETP (CDR X) Y)))
The theorem to be proved thus becomes:
(SETEQUAL (UNION A B) (UNION B A))

By virtue of its recursive formulation, this last formula is easy to
prove by induction. Its validity, moreover, necessarily implies that of
the original theorem. To see that this is true, let us suppose the ex-
istence of two finite sets X and Y that violate the original theorem, i.e.,
such that X U ¥ # ¥ U X. Letting X and § denote, respectively, two
arbitrary list representations of X and Y, we have, by the homomorphic
property of UNION (which we have posited, but not proved) that % UNION Y
must be a list representation of X U Y, and that ¥ UNION X must be a

list representation of Y U X. Then using the homomorphic property of

50

SETEQUAL, it follows from X ¥ Y # Y Y X that (SETEQUAL (UNION X ¥) (UNION
9 i)) is false, giving a contradiction.

This illustration, is of course, much too simple to give a valid
indication of the usefulness of the technique. The example on which we
focused our study is far more difficult. It is taken from a rather elaborate
algorithm (due to Pease, Shostak, and Lamport) for obtaining synchroni-
zation among a group of mutually-suspicious processors, some of which may
be faulty, in a distributed computing system. The paper in which the
algorithm is described is attached as Appendix B. We will assume for the
remainder of this chapter that the reader has at least scanned that material.

Our effort was largely concerned with using the Boyer-Moore theorem-
prover to obtain an automatic proof of one aspect of the correctness of the
algorithm. While there was not sufficient time in the course of the project
to complete the proof, the main lemma required for the verification was
successfully demonstrated. A listing of the definitions and the chain of
lemmas leading to the main lemma is supplied in Appendix C.

The most difficult aspect of carrying out the example was not the proof
itself, but rather the recursive formulation of the algorithm and the state-
ment of its correctness.

The most natural formulation of the algorithm (described on p. p-6 of
Appendix B) requires two mutually-recursive functions: one to compute a
single-element of an interactive consistency vector, and the other to compute
an entire vector. Because the Boyer-Moore system does not allow introduc-
tion of mutually-recursive functions, it was necessary to combine the two
into a singly-recursive function, IC.VECTOR (defined on p. C-8 of Appendix C .)
Note that IC.VECTOR takes 7 arguments: P, PROCS, PROCSCDRS, N, M, SUFFIX,
LTARS. The function returns the interactive consistency vector (represented

as an ASSOC-list) that processor P would compute given that the subset LIARS

51

of PROCS consists of faulty-processors. The quantities N and M are as in the
statement of the algorithm in the paper. The arguments PROCSCDRS and SUFFIX

are artificial, and come into play only on internal recursive calls. In the

initial call, PROCSCDRS is bound to PROCS, and SUFFIX to NIL.

The proved property is that the elements of the interactive consistency
vector corresponding to non-faulty processors give the private values (as
defined by the uninterpreted function PV) of those processors. The crux of
this property is the lemma STRONG.TEST.SETS.N, given on p. C-13 of
Appendix C. It should be noted that this lemma is the culmination of a
long string of lemmas. The proof required about 100 hours of human inter-

action and about several hours of CPU time.

52

|
i
1
%
-:
|

10.

11.

REF ERENCES

R. W. Floyd, "Assigning Meanings to Programs," in Mathematical
Aspects of Computer Science, Vol. 19, J.T.Schwartz (ed.), pp. 19-

32, American Mathematics Society, Providence, Rhode Island (1967).

C.A.R. Hoare, "An Axiomatic Basis for Computer Programming," CACM,
vol. 12, No. 10, pp. 576-583 (October 1969).

B. Elspas, "The Semiautomatic Generation of Inductive Assertions
for Proving Program Correctness," Interim Report, SRI Project 2686,
SRI International, Menlo Park, California (November 1977).

R. London, et al., "Proof Rules for the Programming Language
EUCLID," Acta Informatica (to appear).

R. J. Feiertag, P. M. Melliar-Smith, and J. M. Spitzen, "The Yellow
Programming Language--Preliminary Design Phase Report and Language
Specification,” SRI International, Menlo Park, California (February
1978) .

L. Robinson, "HDM-—Command and Staff Overview," Technical Report
CSL~49, SRI International, Menlo Park, California (February 1978).

P. G. Neumann, et al., "A Provably Secure Operating System: The
System, Its Applications, and Proofs," Final Report, SRI Project
4332, SRI International, Menlo Park, California (February 11,
1978}

J. H. Wensley, et al., "Design Study of Software-Implemented Fault-
Tolerance (SIFT) Computer,” Interim Technical Report 1, SRI Project
4026, SRI International, Menlo Park, California (June 1978).

S. L. Hantler and J. C. King, "An Introduction to Proving the
Correctness of Programs," Computing Surveys of the ACM, Vol. 8,
No. 3, pp. 331-353 (September 1976).

W. C. Carter, W .H. Joyner, and D. Brand, "Microprogram Verifi-
fication Considered Necessary," Research Report RC 7053, IBM
Thomas J. Watson Research Center, Yorktown Heights, N.Y. (December
13, 1977).

S. Saib, et al., "Advanced Software Quality Assurance," Final
Report CR-3-770, General Research Corporation, Santa Barbara,
California (May 1978).

53

12 s

14.

15.

16.

17

18.

19.

20.

21,

22,

23

24.

25,

J. C. King, "A Program Verifier," Ph.D. thesis, Carnegie-Mellon
University, Pittsburgh, Pennsylvenia (September 1969) .

€. Katz and 7. Manna, "logical Analysis of Programs," CACM,
Vol. 19, No. 4, pp. 188-206 (2pril 1976).

S. M. German and B. Wegbreit, "A Synthesizer of Inductive
Assertions," IEEE Trans. on Software Engineering, Vol. SE-1, No. 1,
pp. 68-75 (March 1975).

S. K. Basu and J. Misra, "Proving Loop Programs," IEEE Trans. on

Software Engineering, Vol. SE-1, No. 1, pp. 76-86 (March 1975).

J. H. Morris and B. Wegbreit, "Subgoal Induction," CACM, Vol. 20,
No. 4, pp. 209-222 (April 1977).

R. S. Boyer, J S. Moore, and R. E. Shos:tak, "Primitive Recursive
Program Transformation," Proc, 3rd AQM Symposium on Principles of
Programming Languages, Atlanta, Georgia, pp. 171-174 (January
1976) .

J. Guttag, "Abstract Data Types and the Development of Data
Structures," CACM, Vol. 20, No. 6, pp. 396-404 (June 1977).

B. Elspas, et al., "A Verification System for JOVIAL/J3 Programs
(Rugged Programming Enviromment--RPE/]1)," Technical Report 3756-1,
Stanford Research Institute (January 1976).

B. Elspas, et al., "A Verification System for JOCIT/J3 Programs
(Rugged Programming Enviromment--RPE/2)," Final Report, SRI Project
5042, SRI International, Menlo Park, California (April 1977).

B. Elspas, "The Semiautomatic Generation of Inductive Assertions
for Proving Program Correctness," Interim Report, SRI Project 2686,
SRI International, Menlo Park, California (July 1974).

L. C. Raggland, "A Verified Program Verifier," Ph.D. thesis,
University of Texas at Austin (1973).

W. W. Bledsoe, "Program Correctness," Mathematics Department Memo
ATP-14, The University of Texas at Austin (January 1974).

W. W. Bledsoe, "The Sup-Inf Method in Presburger Arithmetic,"
Mathematics Department Memo ATP-18, The University of Texas at
Austin (December 1974).

W. W. Bledsoe, "A New Method for Proving Certain Presburger
Formulas," Advance Papers, 4th 1Int. Joint Conf. on Artificial
Intelligence, pp. 15-21, Tbilisi, Georgia U.S.S.R. (September
E975) .

54

26.

275

28.

295

30.

3.

32.

33.

36.

38.

39,

W. W. Bledsoe, R. S. Boyer, and W. H. Henneman, "Computer Proofs of
LImit Theorems," Artificial Intelligence, Wol. 3, pp. 27-60 (1972).

W. W. Bledsoe and P. Bruell, "“A Man-Machine Theorem-Proving
System," Artificial Intelligence, Vol. 5, pp. 51-72 (1974).

D. C. Cooper, "Programs for Mechanical Program Verification," in

Machine Intelligence, Vol. 6, pp. 43-59, American Elsevier, New
Yor 971) .

G. B. Dantzig, Linear Programming and Extensions, Princeton
University Press, Princeton, New Jersey (1962).

L. P. Deutsch, "An Interactive Program Verifier," Ph.D. thesis,
University of California, Berkeley, California (1973).

R. E. Gomory, "Pn Algorithm for Integer Solutions to Linear
Programs," Princeton IBRM Math. Res. Report (November 1958); also in
R. L. Graves and P. Wolfe (eds.), Recent Advances in Mathematical

Programming, pp. 269-302, McGraw-Hill, New York (1963).

D. I. Good, R. L. London, and W. W. Bledsoe, "“An Interactive
Verification System," Proc. Int. Conf. on Reliable Software, Los
Angeles, California (April 1975).

S. Igarashi, R. L. London, and D. C. Luckham, "Butomatic Program
Verification 1: A Logical Pasis and Its Implementation," Stanford
Al Memo 200 (May 1973) and USC Information Sciences Institute
Report ISI/RR-73-11 (May 1973).

D. B. Jobhnson, "Finding All the Elementary Circuits of a Cirected
Greph," SIAM J. Computing, Vol. 4, pp. 77-84 (1975).

R. D. Iee, "An MApplication of Mathematical Logic to the Integer
Lincar Programming Problem,” Notre Dame J. Formal Logic, Vol. XIIT,
No. 2 (Bpril 1972).

S. D. Litvintchouk and V. R. Pratt, "A Proof Checker for Dynamic
Logic," 5th Int. Joint Conf. on Artif. Intell., pp 352-558, Cam-
bridge, Massachusetts (August 1977).

M. Prabhaker and N. Deo, "On Algorithms for Bhumerating All
Circuits of a Graph," SIAM J. Computing, Vol. 5, No. 1 (March
1976) .

V. R. Pratt, "Two Easy Theories Whose Combination is Hard," M.I.T.
Technical Report, Cambridge, Massachusetts (September 1977).

R. C. Reac nd R. E. Tarjan, "Bounds on PRacktrack Algorithms for
Listing (ycles, Paths, and Spanning Trees," ERL Memo M-433,
Electronics Rescarch Laboratory, University of California, Berkeley
(1973).

95

40.

4].

42.

43.

44.

45.

46.

47.

48.

R. Shostak, "An Efficient Decision Procedure for Arithmetic with
Function Symbols," Presented at 5th Int. Joint Conf. on 2rtif.
Intell., Cambridge, Massachusetts (August 1977).

R. Shostak, "On the Sup-Inf Method for Proving Presburger
Formules," J. ACM, Vol. 24, No. 4, pp. 529-543 (October 1977).

N. Suzuki, "Verifying Programs by Algebraic and Logical Reduction,"
Proc. Int. Conf. on Reliable Software (Sigplan Notices), Vol. 10,
No. 6, (June 1975).

J. L. Szwarcfiter and P. E. Lauver, "Finding the Elementary Cycles
of a Directed Graph in C(n+m) Per Cycle," No. 60, University of
Newcastle Upn Tyne, Newcastle Upon Tyne, England (May 1974).

R. Tarjan, "Enumeration of the Elementary Circuits of a Directed
Graph," SIAM J. Computing, Vol. 2, (1973).

R. J. Waldinger and K. N. Levitt, "Reasoning About Programs,"
J. Artif. Intell., Vol. 5, pp. 235-316 (1974).

B. Wegbreit, "Constructive Methods in Program Verification," IEEE
Trans. on Software Engineering, Vol. SE-3, No. 3, pp. 193-209 (May

E. W. Dijkstra, A Discipline of Programming, Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey (1976).

R. S. Boyer and J S. Moore, "A Lemma Driven Automatic Theorem
Prover for Recursive Function Theory," Proc. Int. Joint Conf. on
Artificial Intelligence, Cambridge, Massachusetts (August 1977).

56

Appendix A

MACHINE PROOFS OF CONSISTENCY BETWEEN ALGEBRAIC SPECIFICATIONS

AND A VCG IMPLEMENTATION

Appendix A

MACHINE PROOFS OF CONSISTENCY BETWEEN ALGEBRAIC SPECIFICATIONS
AND A VCG IMPLEML..TATION

1. Proof of WS Specification for the Bmpty Statement List.

Here we show the machine proof of consistency for the function WS
over an empty list of statements and an arbitrary predicate, viz., that
VCS("NIL",Q) = <Q>
This proof 1is, of course, accomplished trivially by definitional

expansion, as made clear by the mechanically—generated trace output.

In this proof and also the succeeeding ones, lines typed by the
user are prefaced by the prompt character _. All other lines are
machine generated. The user of the prover first asks for an indented
print-out (PP) of each thecorem to be proved. Following each proof the
system prints out some timing statistics for that call to the function
PROVE.

_PP(NTL.THM1)

(EQUAL (VCS "NIL" Q)
(CONS Q "NIL"))
(NIL.THM])

_ (PROVE NIL.THMI)
This formula simplifies, unfolding the definition of WS, to:

(TRUE) .

Q.E.D.

Load average during proof: 1.117388

Elapsed time: .201 seconds

CPU time (devoted to theorem proving): .091 seconds
I0 time: .093 seconds

CONSes consumed: 84

PROVED

2. Proof of WS over statement list ending in a no-op.

If STAT is a no-op statement, it satisfies the predicate (NULLP
STAT) . In that case WS(STL; STAT, Q) is supposed to be the same as
VCS(STL, Q) where STL is any legal list of statements. This theorem is
shown first, then the machine proof, which must consider four cases
corresponding to the four types of no-op statements. Observe that in
this version the definition for no-op statements included the statement
type COMMENT (which was later eliminated 1in the formal language
definitions shown in Section II).

_PP NULL.THM

(IMPLIES (AND (LEGALP STL)
(NULLP STAT))
(EQUAL (VCS (APPEND STL (CONS STAT "NIL"))

0)
(VCS STL Q)))
NULL. THM
_ (PROVE NULL.THM)

This simplifies, using the lemmas APPEND.REVERSE, CAR.CONS, and
CDR.CONS, and expanding the definitions of NULLP, AND, VCS§,
IMPLIES, APPEND, REVERRE, WCR, and LEGALP, to the following four
new goals:

Case 1. (IMPLIES (AND (LISTP STAT)
(EQUAL (CAR STAT) "LAREL"))
(EQUAL (VCR "NIL" Q)
(CONS Q "NIL"))).
However this again simplifies, unfolding the definition of WCR,
{2/

(TRUE) .

Case 2. (IMPLIES (AND (LISTP STAT)
(EQUAL (CMR STAT) "COMMENT"))
(EQUAL (VCR "NIL" Q)
(CONS Q@ "NIL"))),
which agein simplifies, expanding the function WR, to:

(TRUE) .
Case 3. (IMPLTES (AND (LISTP STAT)
(EQUAL (CAR STAT) "SKIP"))
(EQUAL (VCR "NIL" Q)

(CONS Q "NIL"))),
which we again simplify, opening up the definition of VCR, to:

A-~2

—

(TRUE) .

Case 4. (EQUAL (VCR "NIL" Q)
(CONS © "NIL")),
which again simplifies, unfolding VCR, to:

(TRUE) .

Q.E.D.

ILoad average during proof: .9096334

Elapsed time: 63.322 seconds

CPU time (devoted to theorem proving): 12.399 seconds
IO time: .703 seconds

CONSes consuned: 16453

PRCVED

3. Proof of VCS over statement list ending in an ASSUME.

Here we prove that the specification:
VCS(STL; ASSUME P, Q) = VCS(STL, P->Q)

is satisfied, where STL is any legel list of statements, and P, Q are
arbitrary prediceates.

__PP(ASSUME. THM)

(IMPLIES (LEGALP STL)
(EQUAL (VCS (APPEND STL
(CONS (CONS "ASSUME"
(CONS P "NIL"))
"NIL"))

Q)

(VCS STL
(CONS "TMPLIES"

(CONS P (CONS Q "NIL"))))))
(ASSUME. THM)

_ (PRCVE ASSUME. THM)
This formula simplifies, applying APPEND.REVERSE, CAR.CONS, and

CDR.CONS, and opening up the definitions of WS, IMPLIES, APPEND,
REVERSE, L[ECGALP, and VCR, to two new goals:

Case 1. (IMPLIES (AND (LEGALP STL) (LISTP STL))
(EQUAL (VCR (CONS (CONS "ASSUME"
(CONS P "NIL"))
(REVERSE STL))
Q)
(VCR (REVERSE STL)

A-3

(CONS " IMPLIES"

(CONS P (CONS Q "NIL")))))).,

which we again simplify, applying the lemmas CDR.CONS and
CAR.CONS, and opening up the function WCR, to:

(TRUE) .

Case 2. (EQUAL (VCR "NIL"
(CONS "IMPLIES"
(CONS P (CCNS Q "NIL"))))
(CONS (CONS " IMPLIES"
(CONS P (CONS Q "NTL")))
"NIL")) I
This again simplifies, expanding the function WCR, to:

(TRUE) .
Q.E.D.

Load average during proof: 1.338743

Elapsed time: 33.306 seconds

CPU time (devoted to theorem proving): 3.452 seconds
IC time: .536 seconds

CONSes consumed: 6343

PROVED

4. Proof of WS over a statement list ending in an ASSERT.

Here we show that the specification:
VCS(STL; ASSERT A, Q) = VCS(STL, A) @ <A->Q)>
is satisfied, where STL is any legel statement list, and A,
arbitrary predicates.
_PP ASSFRT.THM
(IMPLIES (LEGALP STL)

(EQUAL (VCS (APPEND STL
(CONS (CONS "ASSERT" (CONS P

a

llNTL"))

MNIL"))

Q)
(APPEND (VCS STL P)
(CONS (CONS "IMPLILS"
(CONS P (CONS O "NIL")))
"NTL"))))

ASSERT. THM

re

_ (PROVE ASSERT.THM)

This simplifies, using the lemmas APPEND.REVERSE, CAR.CONS, and
CDR.CONS, and expanding VCS, IMPLIES, APPEND, REVERSE, VCR, and
LEGALP, to:

(EQUAL (APPEND (VCR "NIL" P)
(CONS (CONS " IMPLIES"
(CONS P (CONS C "NIL")))
"NIL"))
(CONS P
(CONS (CONS " IMPLIES"
(CONS P (CONS Q "NIL")))
"NIL"))) ,

which we again simplify, using the lemmas CDR.CONS and CAR.CONS,
and expanding the functions VCR and APPEND, to:

(TRUE) .
0.E.D.
Load average during oroof: 2.392729
Elapsed time: 32.954 seconds
CPU time (devoted to theorem proving): 2.898 seconds

IC time: .741 seconds
(ONSes consumed: 5412

PROVED

5. Proof of WS over statement list ending in assignment.

Here we prove that the specification:
VCS(STL; X:=A, Q) = VCS(STL, SUBST(A X Q))

is satisfied, where STL is any legal statement 1list, Q is an arbitrary
predicate, X is a variable name, and M is any expression. The function
SURST (known to the theorem prover) 1is like the LISP function, i.c.,
SUBST(X,Y,Z) is the result of substituting an occurrence of X for each
occurrence of Y in Z.

_PP ASST.THM

(IMPLIES (LEGALP STL)
(EQUAL (VCS (APPEND STL
(CONS (CONS ":="
(Cons X

(CONS A
IINIL")))

"NIL"))
Q)
(VCS STL (SUBST A X Q))))
ASST. THM

_(PROVE ASST.THM)

This simplifies, using the lemmas APPEND.REVERSE, CAR.CONS, and
CDR.CONS, and opening up the functions WS, IMPLIES, APPEND,
REVERSE, WCR, and LEGALP, to:

(EQUAL (VCR "NIL" (SUBST A X Q))
(CONS (SUBST A X Q) "NIL")).

This again simplifies, expanding the definition of WR, to:
(TRUE) .

QaE DS

Load average during proof: 1.596421

Elapsed time: 15.719 seconds

CPU time (devoted to thecorem proving): 2.491 seconds

IO time: .329 seconds
CONSes consumed: 4727

PROVED

6. Proof of WS over statement list ending in GOTO.

Here we prove the specification:
VCS (STL; GOTO LABEL (ASSERTING PRED), Q) = VCS(STL, PRED)
where STL is any legal statement list, LABEL is any statement label, and
PRED is the assertion attached to the labelled statemcnt.
_PP GOTO.THM

(IMPLIES (LEGALP STL)
(EQUAL
(VCS (APPEND STL
(CONS (CONS "GOTC"
(CONS LABEL
(CONS PRED "NIL")))
llN-[L"))

Q)
(VCS STL PRED)))

GOTO. THM

_(PROVE GOTO. THM)

This formula simplifies, applying the lemmas APPEND.REVERSE,
CAR.CONS, and CDR.CONS, and opening up the definitions of WS,
IMPLIES, APPEND, REVERSE, VCR, and LEGALP, to:

(EQUAL (VCR "NIL" PRED)
(CONS PRED "NIL")),

which again simplifies, unfolding the function VCR, to:
(TRUE) .

Q.E.D.

Load average during proof: 1.777559

Elapsed time: 16.588 seconds

CPU time (devoted to theorem proving): 2.566 seconds
IO time: .32 seconds
(ONSes consumed: 4291

PROVED

7. Proof of WCS over statement list ending in a statement block.

Here we prove that the specification:
VCS(STL1; BEGIN STL2 END, Q) = VCS(STL1 @ STL2, Q)

is satisfied where STL1 and STL2 are any legal statement lists.

_PP(BBEGIN.THM)

(IMPLIES (AND (LEGALP STL1)
(LEGALP STL2))
(EQUAL (VCS (APPEND STL1 (CONS (CONS "BEGIN" STL2)
"NIL"))
Q)
(VCS (APPEND STL1 STL2)

Q)))
(BEGIN. THM)

_ (PROVE BEGIN.THM)

This conjecture simplifies, applying APPEND.REVERSE, CAR.CONS,
and CDR.CONS, and expanding the functions AND, WCS, IMPLIES,
APPEND, REVERSE, and VCR, to two new conjectures:

Case 1. (IMPLIES (AND (LEGALP STL1)
(LEGALP STL2)
(NOT (EQUAL (APPEND STL1 STLZ2) "NIL"))
(NOT (LISTP (APPEND STL1 STL2))))
(EQUAL (VCR (APPEND (REVERSE STL2)

A-7

|

(REVERSE STL1))
Q)
"UNDEFINED")) .
Name the above subgoal *1.

Case 2. (IMPLIES (AND (LEGALP STL1)
(LEGALP STL2)
(EQUAL (APPEND STL1 STL2) "NIL"))
(EQUAL (VCR (APPEND (REVERSE STL2)
(REVERSE STL1))
Q)
(CONS Q "NIL"))),
which we would normally push and work on later by induction.
But since we have already pushed one goal split off of the
original input we will disregard all that we have previously
done, give the name *1 to the original input, and work on it.

So now let's consider:

(IMPLIES (AND (LEGALP STL1) (LEGALP STL2))
(EQUAL (VCS (APPEND STL1
(CONS (CONS "BEGIN" STL2) "NIL"))
Q)
(VCS (APPEND STL1 STL2) Q))) .

We gave this the name *1 above. ILet us appeal to the induction
principle. Four inductions are suggested by terms in the conjec-
ture. They merge into three likely candidate inductions, none of
which is unflawed. However, one is more likely than the others.
we will induct according to the following scheme:

(AND (IMPLIES (NOT (LISTP STL1))
(p STL1 STL2 Q))
(IMPLIES (AND (LISTP STL1)
(p (CDR STL1) STL2 Q))
(p STL1 STL2 Q))) .

The inequality CDR.LESSP establishes that the measure (COUNT
STL1) decreases according to the well-founded function LESSP in
the induction step of the scheme. The above induction scheme
leads to two new conjectures:

Case 1. (IMPLIES
(NOT (LISTP STL1))
(IMPLIES (AND (LEGALP STL1) (LEGALP STL2))
(EQUAL (VCS (APPEND STLI
(CONS (CONS "BEGIN"
STL2)
"NIL"))
Q)

S—

(VCS (APPEND STL1 STL2) Q)))).
This simplifies, applying the lemmas CAR.CONS, CDR.CONS,
PLISTP.REVERSE, and APPEND.RIGHT.ID, and expending LEGALP, AND,
APPEND, REVERSE, VWCR, WS, and IMPLIES, to:

(TRUE) .

Case 2. (IMPLIES
(AND (LISTP STLI1)
(IMPLIES (AND (LEGALP (CDR STL1))
(LEGALP STL2))
(EQUAL (VCS (APPEND (CDR STL1)
(CONS (CONS "BEGIN" STL2)
"NIL"))
Q)
(VCS (APPEND (CDR STL1) STL2) Q))))
(IMPLTES (AND (LEGALP STL1) (LECALP STL2))
(EQUAL (VCS (APPEND STL1
(CONS (CONS "BBGIN" STL2)
"NIL"))
Q)
(VCS (APPEND STL1 STL2) Q)))).
This simplifies, applying the lemmas APPEMD.REVERSE, CAR.CCNS,
CDR.CONS, and ASSOCIATIVITY.OF.APPEND, and expanding the func-
tions AND, APPEND, REVERSE, WCR, WS, and IMPLIES, to:

(TRUE) .

That finishes the proof of *1. CQ.E.D.

[oad average during proof: 1.191621

Flapsed time: 183.979 seconds

CPU time (devoted to theorem proving): 40.169 seconds
JO time: 2.05 seconds

CONSes consumed: 63919

PRCVED

8. Proof of VCS over statement list ending in PROVE.

Here we prove that the specification:

VWCE(STL; PROVE P, Q) = VCS(STL, P) @ VCS(STL, P->Q)
is satisfied, where STL 1is any legal statement list and P,Q are

predicates.

—

_PP PROVE. THM

(IMPLIES (LEGALP STL)
(EQUAL (VCS (APPEND STL
(CONS (CONS "PROVE"
(CONS P "NIL"))
"NIL"))
Q)
(APPEND (VCS STL P)
(VCS STL
(CONS " IMPLIES"
(CONS P (CONS Q "NIL")))))))
PROVE. THM

_(PROVE PROVE. THM)

This conjecture simplifies, applying the lemmas APPEND.REVERSE,
CAR.CONS, and CDR.CONS, and unfolding the definitions of \CS,
IMPLIES, APPEND, REVERSE, WR, and LEGALP, to the formula:

(EQUAL (APPEND (VCR "NIL" P)
(VCR "NIL"
(CONS " IMPLIES"
(CONS P (CONS Q "MIL")))))
(CONS P
(CONS (CONS "IMPLIES"
(COCNS P (CONS Q "NIL")))
IINILII))) X

However this again simplifies, rewriting with CDR.CONS and
CAR.CONS, and expanding VCR and APPEND, to:

(TRUE) .
Q«E.D.
Ioad average during proof: 4.81208
Elapsed time: 31.836 seconds
CPU time (devoted to theorem proving): 4.20]1 seconds

I0 time: .8 seconds
CONSes consumed: 6574

PROVED

9. Proof of VCS over statement list en'ing in an PPCRT.

Hore we show that the specification:

A=10

VCS(STL; ABORT, Q) = VCS(STL, T)
is satisfied, where STL is any legal statement list and O 1is any

predicate.
_PP ABORT.THM

(IMPLIES (LEGALP STL)
(EQUAL (VCS (APPEND STL (CONS (CONS "ABORT" "NIL")
"NIL"))

Q)
(VCS STL T)))

ABORT. THM

_ (PROVE ABORT. THM)
This simplifies, applying the lemmas APPEND.REVERSE, CDR.CONS,

and CAR.CONS, and unfolding the definitions of WS, IMPLIES,
REVERSE, APPEND, WCR, and LEGALP, (D:

(TRUE) .
Q.E.D.

Load average during proof: 1.684852

Elapsed time: 4.256 seconds

CPU time (devoted to theorem proving): 2.52]1 seconds
IO time: .179 seconds

CONSes consumed: 4355

PROVED

This completes the proof traces generated by the recursive function
theorem prover in demonstrating consistency between the LISP

implementation shown below and the algebraic specifications S0-S11 given

in Sec. II-D.

10. LISP Code for the Verified Implementation of WCG

Below we exhibit one verified implementation of WG (the
verification condition generator for the language SL). This particular
version was written in MacLISP. We have also verified an InterLISP
version that differs only in minor ways from the one shown. Another
InterLISP version that has been written (but which is as yet unverified)

partitions the main function VCR into eleven subfunctions, such as
VCR:1F, VCR:ASST, and VCR:ASSWME, each corresponding to one of the
"cond" clauses in VCR shown below.

(DEFUN WCG (SL Q) (VCR (REVERSE SL) Q))

(DEFUN VCR (RL POST)
(COND ((NULL RL) (LIST POST))
((NULLP (CAR RL)) (VCR (CDR RL) POST))
((EQ (CAAR RL) 'ASSUME)
(VCR (CDR RL)
(LIST 'IMPLIES (CADR (CAR RL)) POST)))
((EQ (CAAR RL) 'ASSERT)
(APPEND (VCR (CDR RL) (CADR (CAR RL)))
(LIST (LIST 'IMPLIES
(CADR (CAR RL))
POST))))
((EQ (CAAR RL) 'GOTOQ)
(VCR (CDR RL) (CADDR (CAR RL))))
((EQ (CARR RL) 'PROVE)
(APPEND (VCR (CDR RL) (CADR (CAR RL)))
(VCR (CDR RL)
(LIST 'IMPLIES
(CADR (CAR RL))
POST))))
((EQ (CAAR RL) 'BEGIN)
(VCR (APPEND (REVERSE (CDR (CAR RL))) (CDR RL))
POST))
((EQ (CA2R RL) 'IF)
(APPEND (VCR (APPEND (LIST (CADDR (CAR RL)))
(LIST (LIST 'ASSUME
(CADR (CAR RL))))
(CDR RL))
POST)
(VCR (APPEND (LIST (CADDDR (CAR RL)))
(LIST (LIST 'ASSUME
(LIST 'NOT
(CADAR RL))))
(CDR RL))
POST)))
((EQ (CAAR RL) ':=)
(VCR (CDR RL)
(SUBST (CADDR (CAR RL)) (CADR (CAR RL)) POST)))
((EQ (CAAR RL) 'WHILE)
(APPEND (VCR (CDR RL)
(CADR (CAR RL)))
(VCR (APPEND (CDDDR (CAR RL))
(LIST (LIST 'ASSUME
(LIST 'AND
(CADR (CAR RL))
(CADDAR RL)))))

A-12

(CADR (CAR RL)))
(LIST (LIST (QUOTE IMPLIES)
(LIST (QUOTE AND)
(CADR (CAR RL))
(LIST (QUOTE NOT)
(CADDR (CAR RL))))

POST)))))
((EQ (CAAR RL) 'ABORT) (VCR (CDR RL) T))
(T (PRINT (LIST 'ERROR:
(CAAR RL)
'35
' UNDEF INED))
(ICC G))))

(DEFUN NULLP (S)
(OR (NULL S)
(EQUAL S '(SKIP))
(EQUAL (CAR S) 'COMMENT)
(EQ (CAR S) 'LABEL)))

Observe that the function VCR is defined so that input of an
unrecognized statement list (as argument RL) produces an error break
(ICC G). In the actual definition of WCR supplied to the theorem prover
this has been replaced by the result "UNDEFINED", since the theorem

prover insists upon total functions. These definitions are shown in the
next section of this appendix.

11. Definitions Provided to the Recursive Function Theorem Prover

We show here the formal definitions ("DEFNS") that were provided to
the Boyer-Moore Theorem Prover for Recursive Functions in order to allow
the Prover to demonstrate the consistency theorems.

Some of these definitions define the (abstract) syntax of SL
programs. The functions NULLP (defining the syntax of no-ops in SL),
ASRTNP (defining the syntax of predicates in SL), and ASSTP (defining
the syntax for assigmment statements in SL) are of this type. In
addition, the function LEGALSTATP gives the syntax for "statement" in
SL, while LEGALP defines the syntax for "statement-list".

A-13

The main recursive function definitions are those for WS, the top-
level function of the WG, and ‘+s subfunction WR, which does the
actual work (on a reversed copy of the first argument to WS, a
statement-list) . Both of these are intended to be accurate Boyer-Moore
DEFN versions of the actual implementation (which happens to be in
MacLisp) . This translation step was done by hand, but, in principle, it
could have been done by a mechanical translation since there is little
more to do than translate such things as LISP "cond's" into Boyer-Moore
three-argument IFs, and the like.

(DEFN NULLP (S)
(IF (LISTP S)
(IF (OR (EQUAL (CAR S)

“SKIP")
(EQUAL (CAR S)
"LABEL")
(EQUAL (CAR S)
llCmMmr"))
T F)
(EQUAL S "NIL"))

NIL)

(DEFN ASSTP (S)
(IF (LISTP S)
(EQUAL (CAR S)
n :__.ll)
F)
NIL)

(DEFN ASRTNP (A)
(IF (NLISTP A)
T
(PLISTP A))
NIL)

(DEFN
LEGALSTATP
(S)
(IF
(NLISTP S)
(EQUAL S "NIL")
(IF
(NULLP S)
E
(IF
(ASSTP S)
E
(IF

A-14

(AND (EQUAL (CAR S)
'ISSERT")
(ASRTNP (CADR S)))
P
(IF
(AND (EQUAL (CAR S)
"ASS[ME")
(ASRTNP (CADR S)))
T
(IF
(AND (EQUAL (CAR S)
"PRO ")
(ASRTNP (CADR S)))
T
(IF
(AND (EQUAL (CAR S)
"BEGIN")
(PLISTP (CLR S)))
g5
(IF
(EQUAL (CAR S)
"GOTO")
P
(IF (EQUAL (CAR S)
" ABORT")
P
(IF (AND (EQUAL (CAR S)
“WHII.E")
(ASRTNP (CADR S))
(ASRTNP (CADDR S))
(LEGALSTATP (CADDDR S)))

(AND (EQUAL (CAR S)
“IF")
(ASRTNP (CADR S))
(LEGALSTATP (CADDR S))
(LEGALSTATP (CADDLCR S))...)
NIL)

(DEFN LEGALP (L)
(IF (NLISTP L)
(EQUAL L "NIL")
(AND (LEGALSTATP (CAR (REVERSE L)))
(LEGALP (REVERSE (CDR (REVERSE L))))))
NIL)

(DEFN
WCR
(RL Q)
(IF
(EQUAL RL "NIL")
(CONS Q "NIL")

T p——————

(IF
(NULLP (CAR RL))
(VCR (CDR RL)
Q)
(IF
(ASSTP (CAR RL))
(VCR (CDR RL)
(SUBST (CADDR (CAR RL))
(CADR (CAR RL))
Q)
(IF

(EQUAL (CAAR RL)
"ASSUME")
(VCR (CDR RL)
(CONS "IMPLIES" (CONS (CADR (CAR RL))
(CONS Q "NIL"))))
(IF
(EQUAL (CAAR RL)
"ASSERT")
(APPEND (VCR (CDR RL)
(CADR (CAR RL)))
(CONS (CONS " IMPLIES"
(CONS (CADR (CAR RL))
(CONS Q "NIL")))
"NIL"))
(IF
(EQUAL (CA2R RL)
"Gopmll)
(VCR (CDR RL)
(CADDR (CAR RL)))
(IF
(EQUAL (CAAR RL)
"BEGIN")
(VCR (APPEND (REVERSE (CDR (CAR RL)))
(CDR RL))
Q)
(IF
(EQUAL (CAPR RL)
"IF")
(APPEND
(VCR
(CONS
(CADDR (CAR RL))
(CONS (CONS "ASSUME"
(CONS (CADR (CAR RL))
"NIL"))
(CDR RL)))
Q)
(VCR
(CONS
(CADDDR (CAR RL))
(CONS

A-16

calinies e

(CONS "ASSUME"
(CONS "NOT"
(CONS (CADR (CAR RL))
"NIL“)))

(CDR RL)))
Q))
(IF
(EQUAL (CAAR RL)
"PROVE")
(APPEND
(VCR (CDR RL)
(CADR (CAR RL)))
(VCR (CDR RL)
(CONS " IMPLIES"
(CONS (CADR (CAR RL))
(CONS Q@ "NIL")))))
(IF
(EQUAL (CAAR RL)
llmRTll)
(VCR (CDR RL)
T)
(IF
(EQUAL (CAAR RL)
“WHIL!E")
(APPEND
(VCR (CDR RL)
(CADR (CAR RL)))
(APPEND
(VCR
(CONS
(CADDDR (CAR RL))
(CONS
(CONS
" ASSUME"
(CONS
(CONS
"AND"
(CONS
(CADR (CAR RL))
(CONS
(CADDR (CAR RL))
"NIL")))
"NIL“))
“NIL"))
(CADR (CAR RL)))
(Cons
(CONS
" IMPLIES"
(CONS
(CONS
"AND"
(CONS

(CADR (CAR RL))
(CONS
(CONS
Ilmr"

(CONS
(CADDR (CAR RL))
"NIL"))
"NILII)))
(CONS Q "NIL")))
"NIL")))

"UNDEFINED")))))))))))
NIL)

(DEFN VCS (STL Q)
(IF (LISTP STL)
(VCR (REVERSE STL)

Q)
"UNDEF INED"))

NIL)))

The LISP functions, TLIST and TLIST1, whose definitions appear

below, are auxiliary (utility) functions designed to tranlate LISP list

expressions that represent SL programs such as:

'((ASSWME B) (:= X A) (IF P S1 (BEGIN S2 S3)))
into the required Boyer-Moore syntax, in this case into:

' (CONS (CONS "ASSUME" (CONS B "NIL"))
(CONS (OQONS ":=" (CONS X (CONS A "NIL"))
(CONS (CONS "IF"
(CONS P (CCNS S1
(CONS (CONS "BEGIN"
(CONS 2
(CONS S3 "NIL")...)

(TLIST
[LAMBDA (L)
(COND
((STRINGP L))
((ATOM L)
(MKSTRING L))

(T (LIST (QUOTE CONS)
(TLIST (CAR L))
(TLIST1 (CDR L])

(TLIST1
(LAMBDA (L)
(COND
((STRINGP L))

((NULL L)
© NILY
({ATOM L)
L)
(T (LIST (QUOTE CONS)
[COoND
((LISTP (CAR L))
(TLIST (CAR L)))
(T (TLIST1 (CAR L]
(TLIST1 (CDR L])

TLIST was used to help translate the algebraic specifications to be
proved into the Theorem Prover's syntax.

A-19

Appendix B

REACHING AGREEMENT IN THE PRESENCE OF FAULTS

by

M. C, Pease
R, E, Shostak
L. Lamport

-]

Appendix B

REACHING AGREEMENT IN THE PRESENCE OF FAULTS

)i Introduction

Fault-tolerant systems often require a means by which independent

processors or processes can arrive at an exact mutual agreement of some
kind, It may be necessary, for example, for the processors of a redun-
dant system to synchronize their internal clocks periodically, Or they
may have to settle upon a value of a time-varying input sensor that gives
each of them a slightly different reading. In the absence of faults,
reaching a satisfactory mutual agreement is usually an eas;, matter. In
most cases, it suffices simply to exchange values (times, in the case of
clock synchronization) and compute some kind of average. In the presence
cf faulty processors, however, simple exchanges cannot be relied upon; a
bad processor might report one value to a given processor, and another
value to some other processors, causing each to calculate a different

"average."

One might imagine that the effects of faulty processors could be
dealt with through the use of voting schemes involving more than one
round of information exchange; such schemes might force faulty processors
to reveal themselves as faulty, or at least to behave consistently enough
with respect to the nonfaulty processors to allow the latter to reach an
exact agreement. As we will show, it is not always possible to devise
schemes of this kind, even if it is known that the faulty processors are
in a minority. Algorithms that allow exact agreement to be reached by
the nonfaulty processors do exist, however, if they sufficiently outnumber

the faulty ones,

Qur results are formulated using the notion of interactive consis-

tency, which we define as follows., Consider a set of n isolated proces-
sors, of which it is known that no more than m are faulty. It is not

known, however, which processors are faulty. Suppose that the processors

B-3

PRECEDING PAGE ELANKe NOT F] LIED

can communicate only by means of two-party messages. The communication
medium is presumed to be fail-safe and of negligible delay. The sender
of a message, moreover, is always identifiable by the receiver, Suppose
also that each processor p has some private value of information Vp (such
as its clock value or its reading of some sensor). The question is, for
given m, n 2 0, whether it is possible to devise an algorithm based on an
exchange of messages that will allow each nonfaulty processor p to com-
pute a vector of values with an element for each of the n processors,

such that:

(1) The nonfaulty processors compute exactly the same vector.
(2) The element of this vector corresponding to a given nonfaulty
processor is the private value of that processor.
Note that the algorithm need not reveal which processors are faulty,
and that the elements of the computed vector corresponding to faulty pro-
cessors may be arbitrary--it matters only that the nonfaulty processors

compute exactly the same value for any given faulty processor.

We will say that such an algorithm achieves interactive consistency,
since it allows the nonfaulty processors to come to a consistent view of
the values held by all the processors, including the fauity ones. The

computed vector is called an interactive consistency (i.c.) vector. Once

interactive consistency has been achieved, each nonfaulty processor can
apply an averaging or filtering function to the i,c. vector, according

to the needs of the application. Since each nonfaulty processor applies
this function to the same vector of values, an exact agreement is neces-

sarily reached,

We will show in the following sections that algorithms can be devised
to guarantee interactive consistency for and only for n,m such that
n 23m+ 1, It will follow, in particular, that a minimum of four pro-
cessors is required in the single-fault case. We will also show, however,
that interactive consistency can be assured for arbitrary n 2m 2 0 if
it is assumed that faulty processors can refuse to pass on information
obtained from other processors, but cannot falsely report this informa-
tion. This assumption can be approximated in practice using authentica-

tors, which we discuss in Section 5,

B-4

We begin in Section 2 with a description of the single-fault case.

Section 3 is concerned with the generalization to n 2 3m +! and Section &
with an impossibility argument for n < 3m, Section 5 gives an algorithm
for arbitrary n 2 m 2 0 that works under the restricted assumption stated

above. Conclusions and issues for future study are given in Section 6,

Problems similar to the one considered here have been studied by

Davies and Wakerly (1l].

2, The Single-Fault Case

In order to give the reader a feeling for the problem, we begin with
a procedure for obtaining interactive consistency in the simple case of

mi= By = A

The procedure consists of an exchange of messages, followed by the
computation of the interactive consistency vector on the basis of the

results of the exchange.

Two rounds of information exchange are required. In the first round,
the processors exchange their private values. In the second round, they
exchange the results obtained in the first round. The faulty processor

' of course, or refuse to send messages. If

(if there is one) may '"lie,'
a nonfaulty processor p fails to receive a message it expects from some
other processor, p simply chooses a value at random and acts as if that

value had been sent.

The exchange having been completed, each nonfaulty processor p
records its private value Vp for the element of the interactive consis-
tency corresponding to p itself, The element corresponding to every
other processor q is obtained by examining the three received reports of
q's value (one of these was obtained directly from q in the first round,
and the others from the remaining two processors in the second round).

If at least two of the three reports agree, the majority value is used,

Otherwise, a default value such as "NIL" is used.

To see that this procedure assures interactive consistency, first

note that if q is nonfaulty, p will receive Vq both from q and from the

B-5

é

other nonfaulty processor(s). p will thus record Vq for q as desired,

Now suppose q is faulty. We must show only that p and the other two non-
faulty processors record the same value for q. If every nonfaulty proces-
sor records NIL, we are done., Otherwise, some nonfaulty processor, say

p, records a non-NIL value v, having received v from at least two other
processors. Now if p received v from both of the other nonfaulty proces-
sors, each other nonfaulty processor must receive v from every processor
other than p (and possibly from p as well); every nonfaulty processor will
thus record v. Otherwise, p must have received v from all processors
other than some other nonfaulty processor p'. In this case p' received v
from all processors other than q (so p' records v) and all other nonfaulty
processors received v from all processors other than p'. All nonfaulty

processors therefore record v as required,

i A Procedure for n > 3m + 1

Recall that the procedure given in the last section requires two
rounds of information exchange, the first consisting of communications of
the form "my private value is'" and the second consisting of communications
of the form "processor x told me his private value is...'". 1In the genecral
case of m faults, m + 1 rounds are required. In order to describe the
algorithm, it will be convenient to characterize this exchange of messages

in a more formal way.

Let P be the set of processors, and V a set of values. For k 2 1,

we define a k-level scenario as a mapping from the set of nonempty strings

over P of length s k + 1, to V. For a given k-level scenario & and
string w = Py PoeeePlos 2 sr sk+ 1, 0(w) is interpreted as the wvalue

Py tells Py that Py told Py that P, told Py vee that P told pr-l is pr's
private value. For a single-element string p, ~(p) simply designates p's
private value Vp. A k-level scenario thus summarizes the outcome of a
k-round exchange of information. Note that, for a given subset of non-

faulty processors, only certain mappings are possible scenarios; in

B-6

particular, since nonfaulty processors are always truthful in relaying

information, a scenario must satisfy:

c(pqw) = c(qw)
for each nonfaulty processor q, arbitrary processor p, and string w.

The messages a processor p receives in a scenario ¢ are given by the
restriction %p of ¢ to strings beginning with p. The procedure we present
now for arbitrary m 2 0, n 2 3m + 1, is described in terms of p's com-

putation, for a given © of the element of the interactive-consistency

p’
vector corresponding to each processor q. The computation is as follows:

(1) If for some subset Q of P of size > (n+m)/2 and some value v,
cp(pwq) = v for each string w over Q of length < m, p records v.

(2) Otherwise, the algorithm for m-1, n-1 is recursively applied
with P replaced by P - {q}, and Op by the mapping gp defined
by:

Sp (W) = op (pwq)

for each string w of length € m over p - {q}. If at least
L(n+m) /2] of the n-1 elements in the vector obtained in the
recursive call agree, p records the common value, otherwise
p records NIL,

A
Note that o corresponds to the m-level subscenario of o in which q
is excluded and in which each processor's private value is the value it
obtains directly from q in C¢. Note also that the algorithm essentially

reduces to the one given in the last section in the case m =1, n = &4,

The proof that the algorithm given above does indeed assure interac-

tive consistency proceeds by induction on m:

Basis m = 0,

In this case, no processor is faulty, and the algorithm always ter-

minates in step (1) with p recording Vq for q.

Induction Step m > 0.

First note that if q is nonfaulty, cp(pwq) = Vq for each string w of
length < m over the set of nonfaulty processors, This set has n-m members
(which, since n 2 3m, is > (n+m)/2) and so satisfies the requirements for
Q in step (1) of the algorithm. Any other set satisfying these require-
ments, moreover, must contain a nonfaulty processor (since it must be of
size > (n+m)/2, and n > 3m + 1), and must therefore also yield Vq as the
common value, The algorithm thus terminates at step (l), and p records

Vq for q as required.

Now suppose that q is faulty, We must show that the value p records
for q agrees with the value each other nonfaulty processor p' records

for g,

First consider the case in which both p and p' exit the procedure at
step (l), each having found an appropriate set Q. Since each such set
has more than (n+m)/2 members, and since P has only n members in all,
the two sets must have more than 2((n+m)/2) - n = m common members.

Since at least one of these must be nonfaulty, the two sets must give

rise to the same value v, as required.

Next suppose that p' exits at step (1), having found an appropriate
set Q and common value v, and that p executes step (2). We claim that in
the vector of n-1 elements that p computes in the recursive call, the ele-
ments corresponding to members of 6 =Q - rq} are equal to v, Since 6
has at least |(n+m)/2] members, it will then follow that p records v in
accordance with step (2). To see that the elements corresponding to
members of Q are indeed equal to v, recall that the mapping ép that p
uses to compute the vector in the recursive call is the restriction, to ;

A
strings beginning with p, of the m-level scenario C defined by:

A
g(w) = oc(wq)

for each string w of length = m over P - fq‘. By induction hypothesis,

this vector is identical to the one p' would have computed using the
A A]
i restriction :P- of o had p' made the recursive call., Moreover, the value

p' would have computed for the element of this vector corresponding to a

B-8

given q' in 6 must be v, since 6 and v satisfy step (1) of the algorithm.

(Note that § is of size 2 [(n+m)/2| > [(n-1) + (m-1)]/2, and that

5pn(pwq') = Gpu(p'wq'q) = v for each string w of length s=m-1 over 6).
The case in which p exits at step (1) and p' exits at step (2) is

handled similarly,

In the one remaining case, both p and p' exit at step (2). In this
case both recurse, and must, by induction hypothesis, compute exactly the

same vector, and hence the same value for q. Q.E.D.

4, Proof of Impossibility for n < 3m +1

The procedure of the last section guarantees interactive consistency
only if n 2 3m + 1. In this section it is shown that the 3m + 1 bound is
tight., We will prove not only that it is impossible to assure interactive
consistency for n < 3m + 1 with m + 1 rounds of information exchange, but
also that it is impossible, even allowing an infinite number of rounds of
exchange (i.e., using scenarios mapping from all nonempty strings over

P to V),

Just to gain some intuitive feeling as to why 3m processors are not
sufficient, consider the case of three processors A, B, C, of which one,
say C, is faulty. By prevaricating in just the right way, C can thwart
A's and B's efforts to obtain consistency. In particular, C's messages
to A can be such as to suggest to A that C's private value is, say, 1,
and that B is faulty. Similarly, C's messages to B can be such as to sug-
gest to B that C's private value is 2, and that A is faulty. If C plays
its cards just right, A will not be able to tell which of B and C is
faulty, and B will not be able to tell which of A and C is at fault, A |
will thus have no choice but to record 1 for C's value while B must record ;

2, defeating interactive consistency. |

In order to give a precise statement of the impossibility result

and its proof, a few formal definitions are needed.

3 " ‘. . : R
First, define a scenario as a mapping from the set P of all non-
empty strings over P, to V. For a given p € P define a p-scenario as a
mapping from the subset of P consisting of strings beginning with p,

to V.

Next, for a given choice N& P of nonfaulty processors, and a given

scenario 0, say that o is consistent with N if for each p ¢ N, q € P and

w ¢ P¥ (set of all strings over P), o(pqw) = (qw). (In other words, <
is consistent with N if each processor in N always reports what it knows

or hears truthfully.)

Now define the notion of interactive consistency as follows. For
each p ¢ P, let Fp be a mapping that takes a p-scenario cp and a processor
q as arguments, and returns a value in V. (Intuitively, Fp gives the
value that p computes for the element of the interactive consistency vec-
tor corresponding to q on the basis of Up.) We say that {Fp‘p ¢ P}

assure interactive consistency for m faults if for each choice of N& P,

lN| > n - m, and each scenario O consistent with N,
(i) For all ps;q ¢ N,Fp(cp,q) = 0(q)
Gui) Eor allipig e N, © € o, Fp(cp,r) = Fq(cq,r)

where %p and oq denote the restrictions of ¢ to strings beginning with p

and q, respectively,

Intuitively, clause (i) requires that each nonfaulty processor p
correctly compute the private value of each nonfaulty processor q, and
clause (ii) requires that each two nonfaulty processors compute exactly

the same vector.

Theorem, If)V| 22 and n < 3m, there exists no prjpeP] that assures

interactive consistency for m faults.

- - (Y ") - . " .
Proof. Suppose, to the contrary, that prlper assure interactive con-
sistency for m faults. Since n < 3m, P can be partitioned into
three nonempty sets A, B, and C, each of which has no more than

m members, Let v and v' be two distinct values in V. Our

B~10

general plan is to construct three scenarios @, £ and g such
that o is consistent with N = AU C, B with N =B U C and

@ with N = AU B, The members of C will all be given private
value v in « and v' in R, Moreover, o, £, and ¢ will be con-
structed in such a way that no processor a€A can distinguish
o from o (i.e., ¥; = 04) and no processor beB can distinguish
B from o (i.e., B, = ©b). It will then follow that for the
scenario g processors in A and B will compute different values

for the members of C,

We define the scenarios @, 8, and ¢ recursively as follows:

(1)

(i1)

(iii)

For each weP+ not ending in a member of C, let
a(w) = B(w) = o(w) = v.

For each aeA, beB, ceC let

a(c) = a(ac) = a(bc) = afcc) = v
B(c) = B(ac) = g(bc) = B(cc) = v’
o(c) = o(ac) = g(bc) = c(cc) = v

For each acA, beB, ceC, peP, weP’c

(i.e., w is any string over P ending in c¢), let

o(paw) = o(aw)
a(pbw) = g(bw)
a(pcw) = a(cw)

R(paw) = a(aw)
B(pbw) = B(bw)
g(pcw) = g(cw)

o(paw) = o(aw)
o(pbw) = c(bw)

O(acw) = a(cw)

c(bcw) = B(cw)

It is easy to verify by inspection that @, B, and O are in fact con-

sistent with N = AU C, BU C, AU B, respectively. Moreover, one can
show by a simple induction proof on the length of w that:
a(aw) = g(aw), RB(bw) = c(bw)
for all aeA, beB, and weP*,
It then follows from the definition of interactive consistency that

for any acA, beB, ceC,

v = a(c) = Fa(ea,c) = F (0a,¢) = Fb(gb,c) = Fb(sb,c) = v' giving a

contradiction, Q.E.D.

5. An Algorithm Using Authentications

The negative result of the last section depends strongly on the
assumption that a faulty processor may refuse to pass on values it has
received from other processors or may pass on fabricated values. This
section addresses the situation in which the latter possibility is pre-
cluded. We will assume, in other words, that a faulty processor may
"lie'" about its own value, and may refuse to relay values it has received,

but may not relay altered values without betraying itself as faulty.

In practice, this assumption can be satisfied to an arbitrarily high

degree of probability using authenticators. An authenticator is a redun-

dant augment to a data item that can be created, ideally, only by the
originator of the data. A processor p constructs an authenticator for a

data item d by calculating Ap[d], where A is some mapping known only to

P
p. 1t must be highly improbable that a processor q other than p can gen-

erate the authenticator Ap[d] for a given d. At the same time, it must

be easy for q to check, for a given p, v, and d, that v = Ap[d]. The

problem of devising mappings with these properties is a cryptographic |
one, Methods for their constructions are discussed in (2] and [3]. For

many applications in which faults are due to random errors rather than to

malicious intelligence, any mappings that "suitably randomize" the data

suffice, ‘

B-12

A scenario g is carried out in the following way. As before, let

g v = g(p) designate p's private value, p communicates this value to r
by sending r the message consisting of the triple {(p, a, v’, where

a = Ap[v]. When r receives the message, it checks that a = Ap[v]. If

so, r takes v as the value of o(rp). Otherwise r lets O(rp) = NIL.

More generally, if r receives exactly one message of the form

(pl, al(PZ’ az...(pk, a V)...)), where & = Ak[v] and for 1 <i < k-1,

aj = A;[(Py415 aj4100« (P> a s v)], then c(rpl...pk) = v. Otherwise,
=N

c(rpl...pk) NIL.

A scenario o constructed in this way is consistent with a given

choice N of faulty processors, if for all processors peN, qeP and strings

w, w' over P,

(1) c(qpw) = (pw)
(ii) o(w'pw) is either o(pw) or NIL

Condition (i) insures that nonfaulty processors are always truthful,
Condition (ii) guarantees that a processor cannot relay an altered value

of information received from a nonfaulty processor.

We now present a procedure, using m+l-level authenticated scenarios,

that guarantees interactive consistency for any n > m, As before, the
procedure is described in terms of the value a nonfaulty processor p
records for a given processor q on the basis of O’

Let Spq be the set of all non-NIL values cp(pwq), where w

ranges over strings of distinct elements with length < m

over P - {p,q]. If Spq has exactly one element v, p records

v for q; otherwise, p records NIL.

To see that interactive consistency is assured consider first the
case in which q is nonfaulty, In this case cp(pwq) is either oc(q) or
NIL for each appropriate w by condition (ii). Since, in particular,
op(pq) = c(q) by (i), Spq = {o(q)}. p thus records o(q) for q as

required,

If q is faulty, it suffices to show only that for each two nonfaulty

processors p and p', Spq = Spuq.
for some string w having no repetitions, with length < m over P - {p,q’l.

So suppose v € Sy, i.e., v = O (pwg)

If p' occurs in w, (say w = wlp'wz) then c(pwq) = U(p'wzq) by (ii), hence
v = o(pwq) € Sp'q' If p' does not occur in w and w is of length < m,
then pw is of length < m, so v = oc(pwq) = o(p'pwq) € Sp'q. Finally, if

p' does not occur in w and w is of length m, w must be of the form Wy TV,

where r is nonfaulty, giving that v = o(pwq) = c(rwzq) (by (ii)) =
G(p'rwzq) (by (1)) e Sp'q. In each case v ¢ Sp'q. A symmetrical argu-
ment shows that if v ¢ Splq, v € Spq- Hence Sp'q = Spq as required,
QB D,

6. Conclusions

The problem of obtaining interactive consistency appears to be quite
fundamental to the design of fault-tolerant systems in which executive
control is distributed., 1In the SIFT [4] fault-tolerant computer under
development at SRI, the need for an interactive consistency algorithm
arises in at least three aspects of the design--synchronization of clocks,
stabilization of input from sensors, and agreement upon results of diag-
nostic tests., In the preliminary stages of the design of this system,
it was naively assumed that simple majority voting schemes could be
devised to treat these situations, The gradual realization that simple

majorities are insufficient led to the results reported here,

These results by no means answer all the questions one might pose
about interactive consistency. The algorithms presented here are intended
to demonstrate existence, The construction of efficient algorithms and
algorithms that work under the assumption of restricted communications is
a topic for future research, Other questions that will be considered
include those of reaching approximate agreement and reaching agreement

under various probabilistic assumptions.

B~14

ACKNOWLEDGMENTS

The authors gratefully acknowledge the substantial contribution of

ideas to this paper by K. N, Levitt, P, M, Melliar-Smith, and J. H.

Wensley.

REFERENCES

1.

o~

Davies, D., and Wakerly, J., "Synchronization and Matching in Redun-

dant Systems,'" IEEE Transactions on Computers, C-27, 6, pp. 531-539
(June 1978).

Diffie, W., and Hellman, M., '"New Directions in Cryptography,' IEEE
Trans. Information Theory, IT-22, 6, pp. 644-654 (Nov. 1976).

Rivest, R, L., Shamir, A., and Adleman, L. A., "A Method for Obtain-
ing Digital Signatures and Public-Key Cryptosystems,'" Comm, ACM,

21, pp. 120-126 (Feb. 1978).

Wensley, et al,, "SIFT: Design and Analysis of a Fault-Tolerant

Computer for Aircraft Control,'" Proceedings of the IEEE, to appear.

B-15

SRI INTERNATIONAL MENLO PARK CA COMPUTER SCIENCE LAB F/6 9/2
THE SEMIAUTOMATIC GENERATION OF INDUCTIVE ASSERTIONS FOR PROVIN==ETC(U)
AUG 78 B ELSPAS, R E SHOSTAK Fﬂk620-73-c—0068
UNCLASSIFIED AFOSR=TR=78=1491

END
é 79

‘ ,AD=A061 919

B |

m" TR =

1122
=

TR -
et p
| BN EY P

Appendix C

MACHINE PROOFS OF THE SYNCHRONIZATION ALGORITHM

Appendix C

MACHINE PROOFS OF THE SYNCHRONIZATION ALGORITHM

This appendix contains a history file showing the definitions
used with the Boyer-Moore theorem prover and the lemmas proved in
connection with the verification of some aspects of the synchro-
nization algorithm discussed in Section IV of the report.

(FILECREATED " 6-Sep-78 20:21:51" <SHOSTAK>NEWHIST..2 16587

changes to: NEWHIST)

(PRETTYCOMPRINT NEWHISTCOMS)
(RPAQQD NEWHISTCOMS (NEWHIST))

(RPAQQ NEWHIST ((DCL PV (P)
NIL)
(DCL LIE (STRING)
NIL)
(DEFN SETP (X)
(IF (PLISTP X)
(IF (NLISTP X)
s
(AND (NOT (MEMBER (CAR X)
(CDR X)))
(SETP (CDR X))))
F)
NIL)
(DEFN CEILING.QUOTIENT (X Y)
(IF (EQUAL X (TIMES Y (QUOTIENT X Y)))
(QUOTIENT X Y)
(ADD1 (QUOTIENT X Y)))
NIL)
(DEFN DISTRIB1 (Y Z)
(IF (NLISTP Y)
IINIL"
(CONS (CONS Z (CAR Y))
(DISTRIB1 (CDR Y)
2)))
NIL)
(DEFN DISTRIB (X Y)
(IF (NLISTP X)
"NILH
(APPEND (DISTRIB1 Y (CAR X))
(DISTRIB (CDR X)
Y)))
NIL)

CSL

(DEFN K.PERMS.OVER.S (K S)
(IF (NUMBERP K)
(IF (EQUAL K 0)
(CONS "NIL" "NIL")
(DISTRIB S (K.PERMS.OVER.S (SUBI K)
S)))

"NIL")
NIL)
(DEFN SCEN1 (STRING LIARS)
(IF (NLISTP STRING)
"NIL"
(IF (NLISTP (CDR STRING))
(PV (CAR STRING))
(IF (MEMBER (CADR STRING)
LIARS)
(LIE STRING)
(SCEN1 (CDR STRING)
LIARS))))
NIL)
(DEFN SCEN (STRING SUFFIX LIARS)
(SCEN1 (APPEND STRING SUFFIX)
LIARS)
NIL)
(DEFN TEST.STRING (STRING P Q VALUE SUFFIX LIARS)
(EQUAL VALUE (SCEN (CONS P (APPEND STRING (CONS Q "NIL")))
SUFFIX LIARS))
NIL)
(DEFN TEST.STRINGS (STRINGS P Q VALUE SUFFIX LIARS)
(IF (NLISTP STRINGS)
i
(AND (TEST.STRING (CAR STRINGS)
P Q VALUE SUFFIX LIARS)
(TEST.STRINGS (CDR STRINGS)
P Q VALUE SUFFIX LIARS)))
NIL)
(DEFN TEST.SET (SET P Q VALUE LENGIH SUFFIX LIARS)
(TEST.STRINGS (K.PERMS.OVER.S LENGTH SET)
P Q VALUE SUFFIX LIARS)
NIL)
(DEFN HAS.K.INSTANCES (K VALUE BAG)
(IF (NUMBERP K)
(IF (EQUAL K 0)
33
(IF (NLISTP BAG)
F
(IF (EQUAL (CAR BAG)
VALUE)
(HAS.K.INSTANCES (SUBI K)
VALUE
(CDR BAG))
(HAS.K.INSTANCES K VALUE (CDR BAG)))))

NIL)

C=2

TP

(DEFN VOTE (NUMBER BALLOTLIST)
(IF (NLISTP BALLOTLIST)
"NIL" ’J
(IF (HAS.K.INSTANCES (SUBl1 NUMBER)
(CAR BALLOTLIST)
(CDR BALLOTLIST))
(CAR BALLOTLIST)

(VOTE NUMBER (CDR BALLOTLIST)))) :
NIL) ‘
(DEFN
K.COMBS.OVER. S
(K S)

(IF (NUMBERP K)
(IF (EQUAL K 0)
(CCNS "NIL" "NIL“)
(IF (NLISTP S)
"NIL"
(APPEND (DISTRIB1 (K.COMBS.OVER.S (SUBI K)
(CDR S))
(CAR S))
(K.COMBS.OVER.S K (CDR S)))))
"NIL")
NIL)
(DEFN STRIP (ALIST)
(IF (NLISTP ALIST)
"NILII
(CONS (CDR (CAR ALIST))
(STRIP (CDR ALIST))))
NIL)
(DEFN DELETE (X Y)
(IF (NLISTP Y)
Y
(IF (EQUAL X (CAR Y))
(DELETE X (CDR Y))
(CONS (CAR Y)
(DELETE X (CDR Y)))))
NIL)
(DEFN LAST.ELT (STRING)
(IF (NLISTP STRING)
"b]IL"
(IF (NLISTP (CDR STRING))
(CAR STRING)
(LAST.ELT (CDR STRING))))
NIL)
(DEFN HAS.NO.LIARS (STRING LIARS)
(IF (NLISTP STRING)

T
(IF (MEMBER (CAR STRING) ? 4
LIARS)
F
(HAS.NO.LIARS (CDR STRING)
LIARS)))

NIL)

(PROVE. LEMMA NO.LIARS (REWRITE)
(IMPLIES (AND (LISTP STRING)
(HAS.NO.LIARS STRING LIARS))
(EQUAL (SCEN1 STRING LIARS)
(PV (LAST.ELT STRING))))

NIL NIL)
(DEFN NON.FAULTIES (PROCS LIARS)
(IF (NLISTP PROCS)
"NILII
(IF (MEMBER (CAR PRCCS)
LIARS)
(NON. FAULTIES (CDR PROCS)
LIARS)
(CONS (CAR PROCS)
(NON.FAULTIES (CDR PROCS)
LIARS))))
NIL)
(PROVE.LEMMA LASTELT.APPEND (REWRITE)
(IMPLIES (AND (PLISTP X)
(PLISTP Y)
(LISTP X))
(EQUAL (LAST.ELT (APPEND Y X))
(LAST.ELT X)))
NIL NIL)
(PROVE. LEMMA NO.LIARS.CONS (REWRITE)
(IMPLIES (AND (LISTP STRING)
(HAS.NO. LIARS STRING LIARS))
(EQUAL (SCEN1 (CONS X STRING)
LIARS)
(PV (LAST.ELT STRING))))
NIL NIL)
(PROVE. LEMMA MEMBER.CAR (REWRITE)
(IMPLIES (AND (LISTP X)
(MEMBER (CAR X)
LIARS))
(NOT (HAS.NO.LIARS X LIARS)))
NIL NIL)
(PROVE. LEMMA APPEND.CAR (REWRITE)
(IMPLIES (AND (LISTP X)
(MEMBER (CAR (APPEND X
(CONS Q "NIL")))
LIARS))
(NOT (HAS.NO.LIARS X LIARS)))
NIL NIL)
(PROVE. LEMMA MEM. APPEND (REWRITE)
(EQUAL (CAR (APPEND X Y))
(IF (LISTP X)
(CAR X)
(CAR Y)))

NIL NIL)

j (PROVE. LEMMA TEST.STRING.NO.LIARS (REWRITE)
| (IMPLIES (AND (PLISTP STRING)
(LISTP STRING)
(HAS.NO.LIARS STRING LIARS)
(NOT (MEMBER Q LIARS)))
(EQUAL (SCEN1 (CONS P
(APPEND STRING

(CONS Q "NIL")
))
LIARS)
(PV Q)))
NIL NIL)
(DEFN MEMBER.STRINGS.HAVE.NO.LIARS (STRINGS LIARS)
(IF (NLISTP STRINGS)
b
(IF (HAS.NO.LIARS (CAR STRINGS)
LIARS)
(MEMBER. STRINGS . HAVE. NO. LIARS (CDR STRINGS)

LIARS)
F))
NIL)
(PROVE. LEMMA DISTRIB.NO.LIARS (REWRITE)
(IMPLIES (AND (MEMBER.STRINGS.HAVE.NO.LIARS Y
LIARS)
(HAS.NO.LIARS S LIARS))
g (MEMBER. STRINGS . HAVE . NO. LIARS
; (DISTRIB S Y)
LIARS))
NIL NIL)
; (PROVE.LEMMA K.PERMS.NO.LIARS (REWRITE)
1 (IMPLIES (HAS.NO.LIARS S LIARS)
! (MEMBER. STRINGS . HAVE. NO. LIARS
: (K.PERMS.OVER.S K S) 1
LIARS))
NIL NIL)
(PROVE. LEMMA STRONGER.TEST.STRING.NO.LIARS (REWRITE)
(IMPLIES (AND (PLISTP STRING)
(HAS.NO. LIARS STRING LIARS)
(NOT (MEMBER Q LIARS)))
(EQUAL (SCEN1 (CONS P
(APPEND STRING
(CONS Q "NIL")
)}
LIARS)
(PV Q)))
NIL NIL)
(DEFN LIST.OF.PLISTS (STRINGS)]
(IF (PLISTP STRINGS) ’
(IF (NLISTP STRINGS)
P
(IF (PLISTP (CAR STRINGS))]
(LIST.OF.PLISTS (CDR STRINGS))
F))
F)
NIL)

R ——

(PROVE. LEMMA K.PERMS.IS.LIST.OF.PLISTS (REWRITE)
(IMPLIES (PLISTP S)
(LIST.OF.PLISTS (K.PERMS.OVER.S K S)))

NIL NIL)
(PROVE. LEMMA TEST.STRINGS.NO.LIARS (REWRITE)
(IMPLIES (AND (MEMBER.STRINGS.HAVE.NO.LIARS
STRINGS
LIARS)
(NOT (MEMBER Q LIARS))
(LIST.OF.PLISTS STRINGS))
(TEST.STRINGS STRINGS P Q (PV Q)
"NIL" LIARS))
NIL NIL)
(PROVE. LEMMA TEST.SET.NO.LIARS (REWRITE)
(IMPLIES (AND (PLISTP S)
(HAS.NO.LIARS S LIARS)
(NOT (MEMBER Q LIARS)))
(TEST.STRINGS (K.PERMS.OVER.S K S)
P Q (PV Q)
"NIL" LIARS))
NIL NIL)
(PROVE. LEMMA K.COMBS.IS.LIST.OF.PLISTS (REWRITE)
(IMPLIES (PLISTP S)
(LIST.OF.PLISTS (K.COMBS.OVER.S K S)))
NIL NIL)
(PROVE. LEMMA MEM.DISTRIB1 (REWRITE)
(IMPLIES (MEMBER X Y)
(MEMBER (CONS A X)
(DISTRIB1 Y A)))
NIL NIL)
(PROVE. LEMMA SUB1l.LENGTH (REWRITE)
(IMPLIES (AND (PLISTP X)
(LISTP X))
(EQUAL (SUB1 (LENGTH X))
(LENGTH (CDR X))))
NIL NIL)
(DEFN ORDERED.SUBSETP (X Y)
(IF (NLISTP X)
'
(IF (NLISTP Y)
F
(IF (ORDERED.SUBSETP X (CDR Y))
3
(IF (EQUAL (CAR X)
(CAR Y))
(ORDERED. SUBSETP (CDR X)
(CDR Y))
BN
NIL)
(PROVE. LEMMA ORDFERED.SUBSETP.CDR (REWRITE)
(IMPLIES (AND (PLISTP X)
(PLISTP Y)
(ORDERED. SUBSETP X Y))
(ORDERED. SUBSETP (CDR X)
Y))

NIL NIL)

(PROVE. LEMMA ORDERED. SUBSET.K.COMBS (REWRITE)
(IMPLIES (AND (PLISTP X)
(PLISTP Y)
(ORDERED. SUBSETP X Y))
(MEMBER X (K.COMBS.CVER.S (LENGTH X)
Y)))

NIL NIL)
(DEFN NON.FAULTY.PROCS (PROCS LIARS)
(IF (NLISTP PROCS)
"NIL"
(IF (MEMBER (CAR PROCS)
LIARS)
(NON.FAULTY. PROCS (CDR PROCS)
LIARS)
(CONS (CAR PRCCS)
(NON.FAULTY.PROCS (CDR PROCS)
LIARS))))
NIL)
(PROVE. LEMMA NON.FAULTIES.HAVE.NO.LIARS (REWRITE)
(HAS.NO.LIARS (NON.FAULTY.PROCS PROCS LIARS)
LIARS)
NIL NIL)
(PROVE.LEMMA PLISTP.NON.FAULTY.PROCS (REWRITE)
(PLISTP (NON.FAULTY.PROCS PROCS LIARS))
NIL NIL)
(PROVE. LEMMA ORDERED. SUBSET.NON. FAULTY.PROCS (REWRITE)
(ORDERED. SUBSETP (NON.FAULTY.PROCS PROCS LIARS)
PROCS)
NIL NIL)
(DEFN TEST.SETS (SETS P Q VALUE LENGTH SUFFIX LIARS)
(IF (NLISTP SETS)
F
(OR (TEST.SET (CAR SETS)
P Q VALUE LENGTH SUFFIX LIARS)
(TEST.SETS (CDR SETS)
P Q VALUE LENGTH SUFFIX LIARS)))

NIL)

(DEFN
IC.VECTOR
(P PROCS PROCSCDRS N M SUFFIX LIARS)
(IF
(NLISTP PROCSCDRS)
"NIL"
(IF
(ZEROP N)
"NIL"
(CONs
(CONS
(CAR PROCSCDRS)
(IF (TEST.SETS (K.CQMBS.OVER.S
(ADD1 (QUOTIENT (PLUS N M)
2))
PROCS)
P
(CAR PROCSCDRS)
(SCEN (CONS P (CONS (CAR PROCSCDRS)
"NIL"))
SUFFIX LIARS)
M SUFFIX LIARS)
(SCEN (CONS P (CONS (CAR PROCSCDRS)
"NIL"))
SUFFIX LIARS)
(VOTE (CEILING.QUOTIENT (PLUS N M)
2)
(STRIP (IC.VECTOR P (DELETE (CAR PROCSCDRS)
PROCS)
(DELETE (CAR PROCSCDRS)
PROCS)
(SUB1 N)
(SUB1 M)
(CONS (CAR PROCSCDRS)
SUFFIX)
LIARS)))))
(IC.VECTOR P PROCS (CDR PROCSCDRS)
N M SUFFIX LIARS))))
NIL)
(PROVE. LEMMA MEMBER.TEST.SETS (REWRITE)

(IMPLIES (AND (MEMBER X Y)
(TEST.SET X P Q VALUE LENGTH SUFFIX

LIARS))
(TEST.SETS Y P Q VALUE LENGTH SUFFIX
LIARS))
NIL NIL)
(PROVE. LEMMA
MEM. NON. FAULTY. K. COMBS
(REWRITE)

(IMPLIES (PLISTP PRCCS)
(MEMBER (NON.FAULTY.PROCS PROCS LIARS)
(K.COMBS.OVER. S
(LENGTH (NON.FAULTY.PROCS PROCS LIARS))
PROCS)))

NIL NIL)

Cc-8

(PROVE.LEMMA TEST.STRINGS.NON.FAULTIES (REWRITE)
(IMPLIES (AND (PLISTP PROCS)
(NOT (MEMBER Q LIARS)))
(TEST.STRINGS
(K.PERMS.COVER. S
LENGTH
(NON.FAULTY. PROCS PROCS LIARS))
P Q (PV Q)
"NIL" LIARS))
NIL NIL)
(PROVE. LEMMA MEMBER.TEST.SETS. INSTANCE (REWRITE)
(IMPLIES (AND (MEMBER (NON.FAULTY.PROCS PROCS
LIARS)
Y)
(TEST.SET (NON.FAULTY.PROCS PROCS
LIARS)
P Q VALUE LENGTH SUFFIX
LIARS))
(TEST.SETS Y P Q VALUE LENGIH SUFFIX
LIARS))
NIL NIL)
(PROVE. LEMMA
MEMBER. TEST. SETS. INSTANCE. INSTANCE
(REWRITE)
(IMPLIES (AND (MEMBER (NON.FAULTY.PROCS PROCS LIARS)
(K.CQMBS.OVER. S
(LENGTH (NON.FAULTY.PROCS PROCS LIARS)
)
PROCS))
(TEST.SET (NON.FAULTY.PROCS PROCS LIARS)
P Q VALUE LENGIH SUFFIX LIARS))
(TEST.SETS (K.COMBS.OVER.S
(LENGTH (NON.FAULTY.PROCS PROCS LIARS))
PROCS)
P Q VALUE LENGTH SUFFIX LIARS))
NIL NIL)
(PROVE. LEMMA
TEST. SETS.NON. FAULTIES
(REWRITE)
(IMPLIES (AND (PLISTP PROCS)
(NOT (MEMBER Q LIARS)))
(TEST.SETS (K.COMBS.OVER.S
(LENGTH (NON.FAULTY.PROCS PROCS LIARS))

PROCS)
PQ (PV Q)
K "NIL" LIARS))
NIL NIL)
(PROVE. LEMMA NEW.MEMBER.TEST.SETS. INSTANCE (REWRITE)
(IMPLIES
(AND (MEMBER X (K.COMBS.OVER.S (LENGTH X)

Y))
(TEST.SET X P Q (PV Q)
LENGTH "NIL" LIARS))
(TEST.SETS (K.CCMBS.OVER.S (LENGTH X)
Y)
P Q (PV Q)
LENGTH "NIL" LIARS))
NIL NIL)

c=9

(PROVE. LEMMA TEST.SETS.LEMMA (REWRITE)
(IMPLIES (AND (PLISTP X)
(PLISTP PROCS)
(ORDERED. SUBSETP X PRCCS)
(HAS.NO. LIARS X LIARS)
(NOT (MEMBER Q LIARS)))
(TEST.SETS (K.COMBS.OVER.S (LENGTH X)
PROCS)
P Q (PV Q)
LENGTH "NIL" LIARS))
NIL NIL)
(DEFN TC (X Y 2)
(IF (NLISTP X)
(IF (NLISTP Y)

T
(IF (NLISTP 2)
F
(IF (EQUAL (CAR Y)
(CAR 7))
(TC X (CDR Y)
(CDR 2))

(TC X Y (CDR 2)))))
(IF (NLISTP Y)

F
(IF (NLISTP 2)
E
(IF (EQUAL (CAR X)
(CAR Y))
(IF (EQUAL (CAR Y)
(CAR 2))
(TC (CDR X)
(CDR Y)
(CDR 7))

(IC X Y (CDR 2)))
(IF (EQUAL (CAR Y)
(CAR 2))
(TC X (CDR Y)
(CDR 2))
(TC X Y (CDR 2)))))))
NIL)

C~10

(DEFN UC (X Y Z)
(IF (NLISTP Y)
(IF (NLISTP X)

R
(IF (NLISTP Z)
F
(IF (EQUAL (CAR Y)
(CAR Z))
(IF (NLISTP X)
(UC X (CDR Y)
(CDR 2))
(IF (EQUAL (CAR X)
(CAR Y))
(UC (CDR X)
(CDR Y)
(CDR Z))
(UC X (CDR Y)
(CDR 2))))

(UC XY (CDR 2)))))
NIL)
(DEFN REST (X Y)
(IF (NLISTP X)
¥
(REST (CDR X)
(CDR Y)))
NIL)
(DEFN N.SUBSET.OF.S (N S)
(IF (ZEROP N)
(INIL“
(IF (NLISTP S)
"NILN
(CONS (CAR S)
(N.SUBSET.OF.S (SUBIL N)
(CDR S)))))
NIL)
(PROVE. LEMMA PLISTP.N.SUBSET.OF.S (REWRITE)
(PLISTP (N.SUBSET.OF.S N S))
NIL NIL)
(PROVE. LEMMA ORDERED.SUBSETP.N.SUBSET.OF.S (REWRITE)
(IMPLIES (AND (NUMBERP N)
(LESSEQP N (LENGTH S))
(PLISTP S))
(ORDERED. SUBSETP (N.SUBSET.OF.S N S)
S))
NIL NIL)
(PROVE. LEMMA N.SUBSET.APPEND (REWRITE)
(IMPLIES (PLISTP X)
(EQUAL (APPEND
(N.SUBSET.OF.S N X)
(REST (N.SUBSET.OF.S N X)
X))
X))
NIL NIL)

C=Ll

(PROVE. LEMMA OS.APPEND (REWRITE)
(IMPLIES (AND (EQUAL Z Z)
(ORDERED. SUBSETP (APPEND X Y)
Z))
(ORDERED. SUBSETP X 7))

NIL NIL)
(PROVE. LEMMA
0S. APPEND. INSTANCE
(REWRITE)
(IMPLIES
(AND (NOT (LESSP (LENGTH (NON.FAULTY.PROCS PROCS LIARS))
N))
(PLISTP X)
(ORDERED. SUBSETP
(APPEND X
(REST (N.SUBSET.OF.S
N
(NON. FAULTY.PROCS PROCS LIARS))
(NON.FAULTY.PROCS PROCS LIARS)))
Z))
(ORDERED. SUBSETP X Z))
NIL NIL)
(PROVE. LEMMA
0S.NSUBSET
(REWRITE)
(IMPLIES (AND (NUMBERP N)
(PLISTP PROCS)
(LESSEQP N (LENGTH (NON.FAULTY.PROCS PROCS
LIARS))))
(ORDERED. SUBSETP (N.SUBSET.OF.S
N
(NON.FAULTY.PROCS PROCS LIARS))
PROCS))
NIL NIL)
(PROVE. LEMMA LENGTH.N.SUBSET (REWRITE)
(IMPLIES (AND (NUMBERP N)
(NOT (LESSP (LENGTH S)
N)))
(EQUAL (LENGTH (N.SUBSET.OF.S N S))
N))
NIL NIL)

C~12

(PROVE. LEMMA HAS.NO.LIARS.N.SUBSET (REWRITE)
(IMPLIES (PLISTP PROCS)
(HAS.NO. LIARS
(N.SUBSET.OF.S N
(NON.FAULTY. PROCS PROCS
LIARS))

LIARS))
NIL NIL)
(PROVE. LEMMA NEW.TEST.SETS.LEMMA (REWRITE)
(IMPLIES (AND (EQUAL N (LENGTH X))
(PLISTP PROCS)
(ORDERED. SUBSETP X PROCS)
(HAS.NO. LIARS X LIARS)
(NOT (MEMBER Q LIARS))
(PLISTP X))
(TEST.SETS (K.COMBS.OVER.S N PROCS)
P Q (PV Q)
K "NIL" LIARS))
NIL NIL)
(PROVE. LEMMA
TEST.SETS.N
(REWRITE)
(IMPLIES (AND (EQUAL N
(LENGTH (N.SUBSET.OF.S
N
(NON.FAULTY. PROCS PROCS LIARS))
))
(NUMBERP N)
(NOT (LESSP (LENGTH (NON.FAULTY.PROCS PROCS
LIARS))
N))
(PLISTP PROCS)
(NOT (MEMBER Q LIARS)))
(TEST.SETS (K.COMBS.OVER.S N PROCS)
P O (PV Q)
LENGTH "NIL" LIARS))
NIL NIL)
(PROVE . LEMMA
STRONG.TEST. SETS.N
(REWRITE)
(IMPLIES (AND (NUMBERP N)
(NOT (LESSP (LENGTH (NON.FAULTY.PROCS PROCS
LIARS))
N))
(PLISTP PROCS)
(NOT (MEMBER Q LIARS)))
(TEST.SETS (K.COMBS.OVER.S N PROCS)
P Q (PV Q)
LENGTH "NIL" LIARS))
NIL NIL)
(PROVE. LEMMA QUO.TIMES (REWRITE)
(IMPLIES (NUMBERP N)

(NOT (LESSP N (TIMES 2 (QUOTIENT N 2)))))
NIL NIL)))

CSES

T — J

Appendix D

: PROJECT ACTIVITIES

Pppendix D

PROJECT ACTIVITIES

A number of outside activities were undertaken on project. They
consisted of attendance at conferences or workshops releted to this
project (in many cases presentations were made at these gatherings), and
publication of papers closely related to the project. The essential

features of these activities are summarized below.

1. Conferences Attended and Papers Presented

Fifth International Joint Conference on Artificial Intelligence -
1977 (IJCAI-77), Massachusetts Institute of Technology, Cambridge,
Mass., 22-25 August 1977. Robert E. Shostak presented his paper, "An
2lgorithm for Reasoning About Equality," covering portions of his
research on the decision zlgorithm for Presburger arithmetic carried out
under this AFCGR contract. His attendance at TJCAI-77 was also
supported in part by this contract.

AFOSR/ARC/ONR Conference on Research Directions in Software
Technology, Providence, RI, 10-12 October 1977. Bernard Elspas attended
this conference and submitted a "Discussant Contribution” at the
invitation of Prof. Jack Dennis, an Associate Chairman. The
"Discussant Contribution" concerned one of the formal conference papers,
"Program Verification," by Ralph london. This contribution is to be
published in the book, Research Directions in Software Technology, now

being prepared under the general editorship of P. Wegner with Tri-
Service support.

Third International Conference on Software Engineeringy, Atlanta,
GA, 10-12 May, 1978. Bernard Elspas attended this conference for the
purpose of acting as "coordinator" (discussion leader) for an evening
session on "Prospects for Program Verification." At this well-attended
session a lively discussion focused on these gquestions: (1) whether
formal correctness proof is practical, (2) when such technigues might be

expected to come into wider use outside of academic and laboratory
environments, and (3) which basic problems currently inhibit this
technology transfer.

2. Papers Published

Robert E. Shostak, "An Algorithm for Reasoning About BEguality,"
Proc. IJCAI-77 Conference, Wol. 1, pp. 526-527 (August 1977).
Scheduled for publication in J.ACM.

Robert S. Boyer and J Strother Moore, "A Lemma Driven Automatic
Theorem Prover for Recursive Function Theory," Proc. IJCAI-T77
Conference, Vol. 1, pp. 511-519 (August 1977). Support for the

preparation of this paper was shared among the present AFOSR contract,
ONR Contract N00014-75-C-0816, and NSF Grant DCR72-0373A01.

Robert E. Shostak, "Deciding Linear Inegualities by Computing Loop
Residues," submitted for publication to C.ACM (10 March 1973).

Bernard Elspas, "Program Verification," a discussion of the paper
by Ralph L. London of the same name, to appear in Research Directions

in Software Technology, P. Wegner (ed.), MIT Press, Cambridge,

Massachusetts (forthcoming) .

DISTRIBUTION LIST

% Rome /Air Development Center [one copy]
: RADC /IS

Griffiss AFB, NY 13441

Department of Electrical Engineering Professor Herbert Freeman
: New York University [one copy]

University Heights
Bronx, N.Y. 10453

Department of Industrial Professor Alan G. Merten
and Operations Engineering [one copy]

University of Michigan

Ann Arbor, MI 48104

Air Force Avionics Laboratory [one copy]
AFAL/AA
F Wright-Patterson AFB, OH 45433
Information Systems Sciences Dr. Paul B, Moranda
McDonnell Douglas Astronautics Company [one copy]

Huntington Beach, CA 92647

Electrical Engineering & Computer Professor Herbert B. Baskin
Sciences [one copy]

University of California, Berkeley

Berkeley, CA 94720

Department of the Army Mr. Paul Boggs
U.S. Army Research Office [two copies]
P.0. Box E2Z2E1

Research Triangle Park, N.C. 27709

RADC /ISIS Dr. Northrup Fowler
Griffis AFB, N.Y. 13441 [two copies]
Program Director Mr. Marvin Denicoff Code 437

Information Systems [two copies]
Office of Naval Research ’
800 North Quincy Street
Arlington, VA 22217 i
Directorate of Mathematical and George W, McKemie, Lt. Col, USAF

Information Sciences [sixteen copies]
Air Force Office of Scientific Research
Bolling Air Force Base, D.C., 20332

s

seCURITY CLASSIFIC ATION OF THIS tALT imbe

vm L titeend

REPORT DOCUMENTATION PAGE B g S

1. REPORT NUMBER /]2. GOVT ACCESSION MO.| 3. RECIPIENT'S CATALOG NUMBER }
amny iy v
AFOSR-TR- 78-1491]
4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED
THE SEMIAUTOMATIC GENERATION OF INDUCTIVE Final " F
ASSERTIONS FOR PROVING PROGRAM CORRECTNESS® 6. PERFORMING ORG. REPORT NUMBER i
7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s) :
Bernard Elspas and Robert E. Shostak AFCSR
FA44620~-73-C=0068 ——
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS
SRI International “/
333 Ravenswood Avenue 61102F 2304/A2 {
Menlo Park, CAlifornia 94025
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE V
. = - . Nuou g 1st 197¢
Air Force Office of Scientific Research/NM easa 151C :
Bolling AFB, Washirgton, DC 20332 12 ;3’35“0‘ SheES

14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 15. SECURITY CLASS. (of this report)

UNCLASSIFIED
H 15a. DECLASSIFICATION/ DOWNGRADING

SCHEDULE -

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Software verification Synchronization algorithms
Inductive assertions

Verification condition generation

Deecision procedures for Presburger arithmetic

20 ABSTYRACT (Continuc 'n reverse side If necessary and identify by block number)
This final report describes progress over the period 1 July 1977 through
30 June 1978 on a five~-year project aimed at the problem of synthesizing so-
called inductive assertions to support the Floyd-Hoare method for proving
correctness of computer programs. —r— P

During the first few years of the project, the emphasis was on more or
less direct approaches toward alleviating this problem, Initially, we

FORM
DD i os 1473 UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

i

M ECURIT Y CLASSIFICATION OF Tr1S PAGE When Data Fatecod)
-

20. Abstract continued.

concentrated on building and using a mechanical solver for finite difference
equations to synthesize inductive assertions. This approach had limited suc-
cess, Unfortunately, neither this approach nor the allied approaches pursued
simultaneously by Katz, Manna, Wegbreit, and German have proved to be adequate
in any general sense. Therefore, during the period 1975-77 we explored alter-
natives that gave promise of at least alleviating the problem or of bypassing
it entirely. These alternatives encompassed the transformation of programs
into primitive recursive form prior to verification, the method of generator

i induction for proof of properties of complex data structures, the use of a
hierarchical design methodology (HDM) to structure programs so as to minimize
the need for loop-cutting assertions, and the methods allied to subgoal induc-
tion and computational induction. The general tenor of these alternative
schemes is that to facilitate program verification considerable care must be
taken in properly structuring both the programs to be proved and their specifi-
cations. An ideal situation would be one in which all the specifications are
written in a formal language that can be processed by a powerful theorem
prover. For the Boyer-Moore theorem prover recursive function theory is such
a language.

In the fifth year of our research, reported here, we concentrated on
using the Boyer-Moore system to prove several quite different kinds of pro-
grams. The first set of programs verified here form a system of LISP functions
implementing a verification condition generator (VCG) for a simple block-
structured language. The specifications for this VCG are given as standard
Hoare axioms and rules. The second set of programs are algorithms for achiev-
ing synchronization among several clocks. This application arose in connection
with the design of an operating system for a fault-tolerant avionics computer
(SIFT) with hardware and software redundancy features,

A separate problem addressed during the fifth year is the application of
directed graph theory to the design of an efficient algorithm for deciding
inequalities for sets of integer variables. This work represents a further
extension of a series of efficient decision algorithms for Presburger arith-
metic (under various restrictions), Most of these algorithms have been
implemented (in LISP) as part of experimental program verifiers built at
SRI during the past few years.

UNCLASSIFIED |

SECURITY CLASSIFICATION OF THIS PAGE(When Dats Entered)

